题解前先科普一下喵!
序列 B 的定义基于数论中的约数和:
对于每个i,B[i] = ∑ A[d],其中d是i的所有正约数(即d能整除i)。
举个栗子喵!B[4]=A[1]+A[2]+A[4]这下就能看懂了吧
正式讲解代码了喵!
A[1]直接赋值为输入的a1。不过这里有个小细节喵:
按照题目严格来说,A[1]应该是a1!而不是a1%m喵!因为之前猫猫取的是后值,所以听取wa声一片喵~(´﹃`)
然后从i=2到n循环,用递推公式计算每个A[i]:
A[i] = (A[i-1] + 7*i) % m
每次计算完都对m取模,这样A[i]的值就在0到m-1之间啦喵~
又创建了一个数组B,大小也是n+1喵!
接下来是双重循环,这里是算法的核心喵~外层循环i从1到n,i代表一个约数喵~
内层循环j从i开始,每次增加i,直到超过n。这样j就是所有i的倍数喵~
对于每个j,我们把A[i]加到B[j]上。
这个巧妙的方法叫做“筛法”喵~它的效果是:当循环结束后,对于每个j,B[j]的值等于所有能整除j的i对应的A[i]之和。正好符合题目要求喵~(骄傲地挺胸)
先初始化ans为0,然后遍历i从1到n,用^=操作符把每个B[i]异或到ans上就完成题目啦!
上代码喵!
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
int main() {
ll n,a1,m;cin >> n >> a1 >> m;
vector<ll> A(n+1);
A[1]=a1;
for(ll i=2;i<=n;i++)
{
A[i]=(A[i-1]+7LL*i)%m;//A的递推公式
}
vector<ll> B(n+1,0);
for(ll i=1;i<=n;i++)
{
for(ll j=i;j<=n;j+=i)
{
B[j]+=A[i];//筛法
}
}
ll ans=0;
for(ll i=1;i<=n;i++) ans^=B[i];
cout << ans;
}
/*
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣤⡀⣀⣠⣤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⡀⢀⣴⣾⣷⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣷⣾⣿⣷⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⠿⠛⠛⠉⠉⠉⠉⠉⠉⠛⠻⠿⣿⣿⣿⣿⣿⣶⣤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢠⣾⣿⣿⣿⡿⠿⠛⠉⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠿⣿⣿⣿⣷⣄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⣀⣿⣿⣿⠟⠁⠀⠀⠀⠀⠀⠀⠀⣰⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠿⣿⣿⣿⡄⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⣠⣾⣿⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣶⣄⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣻⣿⣿⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⢹⣿⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⣿⠁⠈⢢⡀⠀⠀⠀⢸⡇⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⡟⠒⢦⡀⠀⠀⠀
⠀⠀⣠⣤⣤⣼⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡇⠀⠀⠀⠉⢢⣄⠀⠀⢿⠊⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣷⡄⠀⢷⠀⠀⠀
⠀⢰⠇⠀⣰⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡌⣹⠗⠦⣬⣇⠀⠉⢢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⡀⢸⡄⠀⠀
⠀⡟⠀⣼⣯⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⣆⢹⡀⠀⠀⠀⠉⠁⠀⠀⢀⣀⡁⠀⠀⠉⠳⢴⡆⠀⠀⠀⠀⠀⠀⢹⣧⠈⡇⠀⠀
⠀⡇⠀⠀⢻⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣾⠻⠉⠛⠂⠀⠀⠀⠀⠀⠀⠻⠿⣿⣿⣿⣶⣦⡀⠛⣇⠀⠀⠀⠀⠀⣈⣿⠀⡇⠀⠀
⢸⡇⠀⠀⢠⣿⣷⣦⣀⡸⣷⣦⣶⡂⠉⠉⠉⢁⣤⣶⡶⠀⠀⠀⣀⣀⡴⠀⠀⠀⠀⠀⠀⠈⠉⠉⠁⠀⡟⢀⣴⣟⣰⣾⣿⣏⣠⠇⠀⠀
⠈⡇⠀⠀⢸⣿⠁⠉⣿⠛⠛⠃⡇⠀⠀⢠⣶⣿⡿⠛⠁⠀⠀⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠼⢿⠟⠿⢿⡏⠀⠘⣿⡀⠀⠀⠀
⠀⢷⣀⣀⣿⠇⠀⠀⢿⡇⠀⢀⢱⡀⠀⠛⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠀⠀⢸⠇⠀⠀⢹⣿⣄⠀⠀
⠀⠀⣉⣿⡏⠀⠀⠀⠀⠀⠀⢸⣇⣳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⣿⠃⠀⠀⠀⠀⠀⠀⣿⠈⢧⠀
⠀⠘⣿⣿⠁⠀⠀⠀⠀⠀⠀⠘⣿⡛⣶⠀⠀⣠⠔⠒⠛⠒⠦⡀⠀⠀⠀⠀⣠⡤⠶⠤⢤⣀⠀⠀⠀⢀⣏⡄⠀⠀⠀⠀⠀⡀⣿⡆⠈⣧
⣠⡾⠛⣿⣿⣧⠀⠀⠀⠀⢸⣿⠾⢿⡿⠀⣰⠃⠀⠀⠀⠀⠀⢹⡄⠀⠀⡼⠁⠀⠀⠀⠀⠈⠙⣦⠀⢸⣿⡇⣾⣣⡀⠀⢰⣿⣿⣿⣤⠾
⡟⠀⠀⠻⣿⡟⢷⡄⣤⡀⠈⣿⡀⣸⠇⠀⠏⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⢀⡀⠀⠀⠀⠀⢀⡟⠀⠀⠋⣿⣿⣿⡇⣠⣿⠿⠛⢷⡀⠀
⠀⠀⠀⠀⣿⣇⣨⣿⣿⣿⣦⣽⣷⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠃⠀⠙⠢⠤⠤⠴⢾⠀⠀⠀⠀⢸⣷⣿⣿⠟⠁⠀⠀⠈⣧⠀
⠀⠀⠀⠀⠈⠉⠉⠁⠈⠉⠈⢉⣿⡁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⣿⠀
*/

京公网安备 11010502036488号