1.最短路径(spfa)

#include<cstdio>
#include<queue>
#include<iostream>
#include<cstring>
using namespace std;
int m, n;
int head[10000];
struct edge
{
    int to;
    int ne = -1;
    int len;
}ed[10000];//储存边
int time[10000];//遍历次数
bool vis[10000];//是否访问
int d[10000];//每个节点的最短距离
int cnt = 0;//计数
void init()
{
    for (int s = 0; s <= 9999; s++)
    {
        head[s] = -1;
    }
    for (int s = 0; s <= m; s++)
    {
        d[s] = 0x3f3f3f3f;
    }
    memset(vis, 0, sizeof(vis));
    memset(time, 0, sizeof(time));
}
void add(int from, int to, int len)
{
    ed[cnt].to = to;
    ed[cnt].len = len;
    ed[cnt].ne = head[from];
    head[from] = cnt++;
}
int spfa()//默认1是起点;
{
    d[1] = 0;
    deque<int>q;
    q.push_front(1);
    vis[1] = 1;
    bool flag = false;
    while (!q.empty())
    {
        int t = q.front();
        q.pop_front();
        vis[t] = 0;
        for (int s = head[t]; ~s; s = ed[s].ne)
        {
            if (d[ed[s].to] > d[t] + ed[s].len)
            {
                d[ed[s].to] = d[t] + ed[s].len;
                if (!vis[ed[s].to])
                {
                    vis[ed[s].to] = 1;
                    time[ed[s].to]++;
                    if (time[ed[s].to] > n)
                    {
                        flag = true;
                    }
                    if(!q.empty())//注意队列为空时的处理
                    {
                        if(d[ed[s].to]<d[q.front()])
                        {
                            q.push_front(ed[s].to);
                        }
                        else
                        {
                            q.push_back(ed[s].to);
                        }
                    }
                    else
                    {
                        q.push_front(ed[s].to);
                    }
                }
            }
        }
    }
    return flag;
}
int main()
{
    while (cin >> n >> m)
    {
        cnt = 0;
        init();
        for (int s = 0; s < m; s++)
        {
            int a, b, c;
            cin >> a >> b >> c;
            add(a, b, c);
            add(b, a, c);
        }
        int ans = spfa();
        for (int i = 1; i <= n; i++)
            printf("distance[%d] = %d\n", i, d[i]);
    }
}

 

2.最小生成树~~

 

#include<cstdio>
#include<queue>
#include<iostream>
#include<algorithm>
using namespace std;
int fa[10005];并查集查询父亲节点
struct edg
{
	int to;
	int from;
	int len;
}ed[10005];储存边
bool cmp(edg a, edg b)
{
	return a.len < b.len;
}
void init()
{
	for (int s = 0; s < 10000; s++)
	{
		fa[s] = s;
	}
}
int tofind(int x)
{
	if (fa[x] != x)
	{
		fa[x] = tofind(fa[x]);
	}
	return fa[x];
}
int tojoin(int a, int b)
{
	a = tofind(a);
	b = tofind(b);
	//cout << a << " " << b << endl;
	if (a != b)
	{
		fa[a] = b;
		return 1;
	}
	return 0;
}
int main()
{
	int n;
	while (cin >> n)
	{
		init();
		for (int s = 0; s < n; s++)
		{
			cin >> ed[s].from >> ed[s].to >> ed[s].len;
		}
		sort(ed, ed + n, cmp);
		int sum = 0;
		for (int s = 0; s < n; s++)
		{
			int a = tojoin(ed[s].from, ed[s].to);
			sum = sum + ed[s].len*a;
			cout << ed[s].from << " " << ed[s].to <<" "<< ed[s].len << " "<<a<<endl;
		}
		cout << sum << endl;
	}
}

3.第k最短路(A*算法)~~

#include<stdio.h>  
#include<string.h>  
#include<vector>  
#include<queue>  
#define inf 1<<31-1  
#define N 1011  
using namespace std;
int dis[N], head1[N], head2[N];//前向星  
struct node1
{
	int v, w, next;
};
node1 edg1[N * 100], edg2[N * 100];
bool in_q[N];//相当于vis~;
struct node2//A*算法所需
{
	int v, f, g;
	bool operator <(const node2 &x)const
	{
		if (x.f == f) return x.g<g;
		return x.f<f;
	}
};
int h;//向前星  
void initi(int n)
{
	int i;
	for (i = 0; i <= n; i++)
	{
		dis[i] = inf;
		head1[i] = -1;
		head2[i] = -1;
		in_q[i] = false;
	}
	h = 0;
}
void add(int u, int v, int w)
{
	edg1[h].v = v;
	edg1[h].w = w;
	edg1[h].next = head1[u];
	head1[u] = h;
	//正向图
	edg2[h].v = u;
	edg2[h].w = w;
	edg2[h].next = head2[v];
	head2[v] = h;
	//反向图;
	++h;
}
void spfa(int st, int ed)
{
	queue<int>q;
	q.push(st);
	in_q[st] = true;
	dis[st] = 0;
	int si, ui, mdis, i;
	while (!q.empty())
	{
		si = q.front();
		q.pop();
		in_q[si] = false;
		for (i = head2[si]; i != -1; i = edg2[i].next)
		{
			ui = edg2[i].v;
			mdis = dis[si] + edg2[i].w;
			if (mdis<dis[ui]) {
				dis[ui] = mdis;
				if (!in_q[ui]) {
					q.push(ui);
					in_q[ui] = true;
				}
			}
		}
	}
	//    printf("%d \n",dis[ed]);  
}
//启发式搜索。f(x) = g(x)到当前点的距离 + h(x)当前点到终点的距离。  
int astar(int st, int ed, int k)
{
	if (st == ed)
		k++;
	if (dis[st] == inf)//反向不连通,正向也必然不连通  
		return -1;
	priority_queue<node2>q;//二级排序f,g从小到大!!!  
	node2 temp, ui;
	temp.v = st;
	temp.g = 0;
	temp.f = temp.g + dis[temp.v];
	q.push(temp);
	int cnt = 0, i;
	while (!q.empty())
	{
		temp = q.top();
		q.pop();
		if (temp.v == ed)
			cnt++;
		if (cnt == k)
			return temp.g;
		for (i = head1[temp.v]; i != -1; i = edg1[i].next)
		{
			ui.v = edg1[i].v;
			ui.g = temp.g + edg1[i].w;
			ui.f = ui.g + dis[ui.v];
			q.push(ui);
		}
	}
	return -1;
}
int main()
{
	int n, m, i, ans;
	int st, ed, k;
	int a, b, d;
	while (scanf("%d%d", &n, &m) != EOF)
	{
		initi(n);
		for (i = 0; i<m; i++)
		{
			scanf("%d%d%d", &a, &b, &d);
			add(a, b, d);
		}
		scanf("%d%d%d", &st, &ed, &k);//st是起点~~ed是终点~~k是所求的第k最短路
		spfa(ed, st);
		ans = astar(st, ed, k);//A*算法;
		printf("%d\n", ans);
	}
	return 0;
}

 

4.二分图的最大匹配数(最小顶点覆盖~用点来覆盖边)

 

#include<cstdio>  
#include<iostream>  
using namespace std;
bool map[1005][1005];//关系;
int b_find[1005];//被选择的对象
bool use[1005];//在某一次查询中有没有被访问过
int ans = 0;
int g, b;//g是几个选择者~b是被选择者;
void init()
{
	memset(map, 0, sizeof(map));
	memset(b_find, 0, sizeof(b_find));
	memset(use, 0, sizeof(use));
	ans = 0;
}
int find(int x)
{
	for (int s = 1; s <= b; s++)
	{
		if (map[x][s] && !use[s])
		{
			use[s] = 1;
			if (!b_find[s] || find(b_find[s]))
			{
				b_find[s] = x;
				return 1;
			}
		}
	}
	return 0;
}
int main()
{
	int k;
	while (~scanf("%d", &k) && k)
	{
		init();
		scanf("%d %d", &g, &b);
		while (k--)
		{
			int a, b;
			scanf("%d %d", &a, &b);
			map[a][b] = 1;
		}
		for (int s = 1; s <= g; s++)
		{
			memset(use, 0, sizeof(use));
			if (find(s))
			{
				ans++;
			}
		}
		cout << ans << endl;
	}
	return 0;
}

5、二分图中最小边覆盖=顶点数-最小顶点覆盖(最大匹配)(至少需要用多少边才能覆盖所有点)

6、二分图中最大独立集+最小顶点覆盖(最大匹配)=顶点数 

7, 判断能否topo排序

#include<cstdio>  
#include<cstring>  
#include<vector>  
#include<queue>  
using namespace std;  
const int maxn=100+10;  
int n,m;  
vector<int> G[maxn];//G[i]表示i节点所指向的所有其他点  
int in[maxn];//节点入度  
bool topo()//判断该图是否可拓扑排序  
{  
    queue<int> Q;  
    int sum=0;//记录可拆解的点数目  
    for(int i=0;i<n;i++)if(in[i]==0)  
        Q.push(i);  
    while(!Q.empty())  
    {  
        int u=Q.front(); Q.pop();  
        sum++;  
        for(int i=0;i<G[u].size();i++)  
        {  
            int v=G[u][i];  
            if(--in[v]==0) Q.push(v);  
        }  
    }  
    return sum==n;//可完全拓扑  
}  
int main()  
{  
    while(scanf("%d%d",&n,&m)==2&&n)  
    {  
        memset(in,0,sizeof(in));  
        for(int i=0;i<n;i++) G[i].clear();  
        for(int i=0;i<m;i++)  
        {  
            int u,v;  
            scanf("%d%d",&u,&v);  
            G[u].push_back(v);  
            in[v]++;  
        }  
        printf("%s\n",topo()?"YES":"NO");  
    }  
    return 0;  
}  

8.反向topo

#include<cstdio>  
#include<cstring>  
#include<stack>  
#include<vector>  
#include<queue>  
#include<iostream>  
using namespace std;  
int te;  
int m,n;  
int out[30005];  
vector<int>g[30005];  
stack<int>qu;//用来储存最终答案的  
void topo()//本来的代码,应该是按入度来排序~可这道题决定输出顺序的是最后的哪位数(比如说之前提到的 3 1 2,因为1 应该在 2前面所以这样排列)  
{  
    priority_queue<int>q;  
    for(int s=1;s<=n;s++)  
    {  
        if(out[s]==0)  
        {  
            q.push(s);//选择无出度的压入优先队列  
//          cout<<s<<endl;  
        }  
    }  
    while(!q.empty())  
    {  
        int tem=q.top();  
        qu.push(tem);  
        q.pop();  
        for(int s=0;s<g[tem].size();s++)  
        {  
            out[g[tem][s]]--;//解除与之的关系  
            if(out[g[tem][s]]==0)//无出度  
            {  
                q.push(g[tem][s]);//压入优先队列  
            }  
        }  
    }  
    int t=0;  
    while(!qu.empty())  
    {  
        if(t==0)//别忘了输出的格式  
        {  
            printf("%d",qu.top());  
        }  
        else  
        {  
            printf(" %d",qu.top());  
        }  
        t++;  
        qu.pop();  
    }  
        cout<<endl;  
 }   
int main()  
{  
    ios::sync_with_stdio(false);  
    cin>>te;  
    while(te--)  
    {  
        memset(out,0,sizeof(out));//初始化  
        scanf("%d%d",&n,&m); //之前用了解除stdio的同步~以为这样时间就够用了,可是还是tle了;  
        int a,b;  
        for(int s=1;s<=n;s++)//初始化  
        {  
            g[s].clear();  
        }  
        while(m--)  
        {  
            scanf("%d%d",&a,&b);    
            g[b].push_back(a);  
            out[a]++;  
        }  
        topo();  
    }  
    return 0;  
 }   

9.lca算法~~

#include<iostream>  
#include<cstdio>  
#include<vector>  
using namespace std;  
int n;  
int father[105];                            //每个节点的父节点    
int rnk[105];                               //树中节点的个数    
int ancestor[105];                          //已访问节点集合的祖先    
  
void initSet() {  
    for (int i = 0; i<n; i++) {  
        father[i] = i;                      //初始化时,所在子树的祖先就是自己    
        rnk[i] = 1;                         //所在树的深度为0    
    }  
}  
  
int findSet(int x) {  
    if (x != father[x])  
        father[x] = findSet(father[x]);     //压缩式的查找,在查找过程中更新每个节点的祖先    
    return father[x];  
}  
  
void unionSet(int x, int y) {               //合并子树,把节点数小的树合并到节点数大的树    
    x = findSet(x);  
    y = findSet(y);  
  
    if (x == y)  
        return;  
  
    if (rnk[x] >= rnk[y]) {  
        father[y] = x;  
        rnk[x] += rnk[y];  
    }  
    else {  
        father[x] = y;  
        rnk[y] += rnk[x];  
    }  
}  
  
int flag[105];                             //记录点是否为访问过    
vector<int> tree[105];                     //树的表示    
vector<int> query[105];                    //查询的表示    
void tarjan(int u)  
{                        //访问到集合u时    
    for (int i = 0; i<tree[u].size(); i++) {  
        int v = tree[u][i];   
    //  cout << v << endl;//假设这个节点是v    
        tarjan(v);  
        unionSet(u, v);                     //将子节点和根节点合并,并查集的作用只是代表一个集合,仅仅当做一个集合使用    
        ancestor[findSet(u)] = u;            //合并后的集合的祖先为u,只要标记这个集合的代表元素的祖先为x就行,这个集合    
                                             //内的其他元素能够通过findSet来找到代表,再利用代表找到祖先    
    }  
    flag[u] = 1;  
  
    for (int i = 0; i<query[u].size(); i++)  
    {  
        if (flag[query[u][i]])               //如果另外一个节点已经被访问过,则输出另外一个节点所在集合的祖先    
            cout << u << "和" << query[u][i] << "的最近公共祖先为:" << ancestor[findSet(query[u][i])] << endl;  //找到节点query[u][i]所在集合的代表的祖先,  
                                                                                                       //也就是这个集合的祖先,只是用代表的ancestor值标记一下而已     
    }  
}  
int main()  
{  
    initSet();  
    tree[1].push_back(2);  
    tree[1].push_back(3);  
    tree[2].push_back(4);  
    tree[3].push_back(5);  
    query[4].push_back(5);  
    query[5].push_back(4);  
    tarjan(1);  //算的时候还是要用入度来找到最祖先
    return 0;  
}  

10.次短路

#include<cstdio>  
#include<queue>  
#include<iostream>  
#include<cstring>  
using namespace std;  
int m, n;  
int head[100000];  
#define inf 0x3f3f3f3f  
struct edge  
{  
    int to;  
    int ne;  
    int len;  
}ed[500000];  
bool vis[100000];  
int d[100000];  //起点到各个点的距离
int d2[100000];  //终点到各个点的距离
int cnt = 0;  
void init()  
{  
    for (int s = 0; s <= 9999; s++)  
    {  
        head[s] = -1;  
  
    }  
    for (int s = 0; s < 490000; s++)  
    {  
        ed[s].ne = -1;  
    }  
    for (int s = 0; s <= n; s++)  
    {  
        d[s] = inf;  
        d2[s] = inf;  
    }  
    memset(vis, 0, sizeof(vis));  
}  
void add(int from, int to, int len)  
{  
    ed[cnt].to = to;  
    ed[cnt].len = len;  
    ed[cnt].ne = head[from];  
    head[from] = cnt++;  
}  
void spfa(int e,int d[])  
{  
    d[e] = 0;  
    queue<int>q;  
    q.push(e);  
    vis[e] = 1;  
    while (!q.empty())  
    {  
        int t = q.front();  
        q.pop();  
        for (int s = head[t]; ~s; s = ed[s].ne)  
        {  
            if (d[ed[s].to] > d[t] + ed[s].len)  
            {  
                d[ed[s].to] = d[t] + ed[s].len;  
                if (!vis[ed[s].to])  
                {  
                    vis[ed[s].to] = 1;  
                    q.push(ed[s].to);  
                }  
            }  
        }  
        vis[t] = 0;  
    }  
}  
int main()  
{  
    while (cin >> n >> m)  
    {  
        cnt = 0;  
        init();  
        for (int s = 0; s < m; s++)  
        {  
            int a, b, c;  
            cin >> a >> b >> c;  
            add(a, b, c);  
            add(b, a, c);  
        }  
        spfa(1,d);  //正向遍历
        spfa(n, d2);  //反向遍历
        int ans = inf;  
        for (int s = 1; s <= n; s++)  //找到次短路~~
        {  
            for (int t = head[s]; ~t; t = ed[t].ne)  
            {  
                int a = ed[t].to;  
                int le = ed[t].len;  
                int te = d[s] + d2[a] + le;  
                if (te > d[n] && ans > te)  
                {  
                    ans = te;  
                }  
            }  
        }  
        cout << ans << endl;  
    }  
    return 0;  
}  

11 .最大流的Dinic算法~~

#include <string.h>  
#include <queue>  
using namespace std;  
int const inf = 0x3f3f3f3f;  
int const MAX = 205;  
int n, m;  
int c[MAX][MAX], dep[MAX];//dep[MAX]代表当前层数  
  
int bfs(int s, int t)//重新建图,按层次建图  
{  
    queue<int> q;  
    while(!q.empty())  
        q.pop();  
    memset(dep, -1, sizeof(dep));  
    dep[s] = 0;  
    q.push(s);  
    while(!q.empty()){  
        int u = q.front();  
        q.pop();  
        for(int v = 1; v <= m; v++){  
            if(c[u][v] > 0 && dep[v] == -1){//如果可以到达且还没有访问,可以到达的条件是剩余容量大于0,没有访问的条件是当前层数还未知  
                dep[v] = dep[u] + 1;  
                q.push(v);  
            }  
        }  
    }  
    return dep[t] != -1;  
}  
  
int dfs(int u, int mi, int t)//查找路径上的最小流量  
{  
    if(u == t)  
        return mi;  
    int tmp;  
    for(int v = 1; v <= m; v++){  
        if(c[u][v] > 0 && dep[v] == dep[u] + 1  && (tmp = dfs(v, min(mi, c[u][v]), t))){  
            c[u][v] -= tmp;  
            c[v][u] += tmp;  
            return tmp;  
        }  
    }  
    return 0;  
}  
  
int dinic()  
{  
    int ans = 0, tmp;  
    while(bfs(1, m)){  
        while(1){  
            tmp = dfs(1, inf, m);  
            if(tmp == 0)  
                break;  
            ans += tmp;  
        }  
    }  
    return ans;  
}  
  
int main()  
{  
    while(~scanf("%d %d", &n, &m)){  
        memset(c, 0, sizeof(c));  
        int u, v, w;  
        while(n--){  
            scanf("%d %d %d", &u, &v, &w);  
            c[u][v] += w;  
        }  
        printf("%d\n", dinic());  
    }  
    return 0;  
}

12.树状数组的区间修改~单点查询~

#include<iostream>  
#include<cstdio>  
using namespace std;  
int c[100005];  
int n;  
int lowbit(int x)  
{  
    return x&(-x);  
}  
void updata(int x,int d)  
{  
    for (int s = x; s > 0; s -= lowbit(s))  
    {  
        c[s] += d;  
    }  
}  
int getn(int x)  
{  
    int ans = 0;  
    for (int s = x; s <= n; s += lowbit(s))  
    {  
        ans += c[s];  
    }  
    return ans;  
}  
int main()  
{  
    ios::sync_with_stdio(false);  
    while (cin >> n&&n)  
    {  
        memset(c, 0, sizeof(c));  
        int k = n;  
        while (k--)  
        {  
            int a, b;  
            cin >> a >> b;  
            updata(a-1, -1);  
            updata(b, 1);  
        }  
        for (int s = 1; s <= n; s++)  
        {  
            if (s != n)  
            {  
                cout << getn(s) << " ";  
            }  
            else  
            {  
                cout << getn(s) << endl;  
            }  
        }  
    }  
    return 0;  
}  

 

13. 树状数组的区间查询区间修改~~

 

#include<iostream>  
#include<cstdio>  
using namespace std;  
long long int c[100005][2] = { 0 };  
int n, q;  
int lowbit(int x)  
{  
    return x&(-x);  
}  
void add(int pos, int x,int f)  
{  
    while (pos <= n)  
    {  
        c[pos][f] += x;  
        pos += lowbit(pos);  
    }  
}  
long long qu(int pos, int f)  
{  
    long long res = 0;  
    while (pos > 0)  
    {  
        res += c[pos][f];  
        pos -= lowbit(pos);  
    }  
    return res;  
}  
long long ask(int pos)  
{  
    long long res = (pos + 1)*qu(pos, 0) - qu(pos, 1);  
    return res;  
}  
int main()  
{  
    ios::sync_with_stdio(false);  
    cin >> n;  
    int a = 0, b, opt, x;  
    for (int s = 1; s <= n; s++)  
    {  
        cin >> b;  
        add(s, b - a, 0);  
        add(s, (b - a)*s, 1);  
        a = b;  
    }  
    cin >> q;  
    for (int s = 1; s <= q; s++)  
    {  
        cin >> opt;  
        if (opt == 1)  //1的时候是修改~
        {  
            cin >> a >> b >> x;  
            add(a, x, 0);  
            add(b + 1, -x, 0);  
            add(a, x*a, 1);  
            add(b + 1, -x*(b + 1), 1);  
        }  
        else if (opt == 2)  
        {  
            cin >> a >> b;  
            cout << ask(b) - ask(a - 1) << endl;  
        }  
    }  
    return 0;  
}  

14.割点的判断

#include<iostream>  
#include<cstdio>  
#include<algorithm>  
using namespace std;  
struct ***  
{  
    int to, ne;  
}es[10005];  
int head[100];  
int e;  
void add(int u, int v)  
{  
    es[e].to = v;  
    es[e].ne = head[u];  
    head[u] = e++;  
}  
int root;  
int ans;  
int dfn[105];  
int low[105];//最早返祖节点;  
int vis[105];  
int ar[105];  
int time;  
void tarjan(int u, int fa)  
{  
    int son = 0; //子孙数量  
    vis[u] = 1;//标记已经被访问过  
    dfn[u] = low[u] = ++time;  
    for (int s = head[u]; ~s; s = es[s].ne)  
    {  
        int v = es[s].to;//找到子孙节点;  
        if (!vis[v])//如果这个不是曾经的祖宗  
        {  
            tarjan(v, u);//遍历  
            son++;//子孙++  
            low[u] = min(low[u], low[v]);//如果子孙能够回溯到更早的~~那么父亲辈的他也行~~  
            if (u == root&&son > 1 || u != root&&dfn[u] <= low[v])//如之前所言~  
            {  
                ar[u] = 1;  
            }  
        }  
        if (vis[v] && v != fa)  
        {  
            low[u] = min(low[u], dfn[v]);  
        }  
    }  
}  
int main()  
{  
    int n;  
    while (~scanf("%d", &n) && n)  
    {  
        memset(vis, 0, sizeof(vis));  
        memset(head, -1, sizeof(head));  
        memset(dfn, 0, sizeof(dfn));  
        memset(low, 0, sizeof(low));  
        memset(ar, 0, sizeof(ar));  
        e = 0;  
        time = 0;  
        ans = 0;  
        int u, v;  
        while (scanf("%d", &u) && u)  
        {  
            while (getchar() != '\n')  
            {  
                scanf("%d", &v);  
                add(u, v);  
                add(v, u);  
            }  
        }  
        root = 1;  
        tarjan(root, -1);  
        int ans=0;  
        for (int s = 1; s <= n; s++)  
        {  
            if (ar[s])  
            {  
                ans++;  
            }  
        }  
        cout << ans << endl;  
    }  
    return 0;  
}  

15. 算重边的次小生成树~~

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int n, m;
struct node
{
	int u, v, cost;
}e[121211];
int pre[121211];
int edge[112211];
bool cmp(struct node a, struct node b)
{
	return a.cost<b.cost;
}
int Find(int a)
{
	if (a != pre[a])
	{
		pre[a] = Find(pre[a]);
	}
	return pre[a];
}
int top;
int Kru()
{
	int num = 0;
	for (int i = 0; i <= n; i++)
		pre[i] = i;
	for (int i = 0; i<m; i++)
	{
		int x = Find(pre[e[i].u]);
		int y = Find(pre[e[i].v]);
		if (x != y)
		{
			num += e[i].cost;
			edge[++top] = i;
			pre[y] = x;
		}
	}
	int k = 0;
	for (int i = 1; i <= n; i++)
	{
		if (pre[i] == i)
			k++;
	}
	if (k == 1)
		return num;
	else
		return INF;
}
//int top;
int Kru2(int xx)
{
	int num = 0;
	for (int i = 0; i <= n; i++)
		pre[i] = i;
	for (int i = 0; i<m; i++)
	{
		if (i == xx)
			continue;
		int x = Find(pre[e[i].u]);
		int y = Find(pre[e[i].v]);
		if (x != y)
		{
			num += e[i].cost;
			//         edge[++top] = i;
			pre[y] = x;
		}
	}
	int k = 0;
	for (int i = 1; i <= n; i++)
	{
		if (pre[i] == i)
			k++;
	}
	if (k == 1)
		return num;
	else
		return INF;
}
int main()
{
	int T;
	scanf("%d", &T);
	for (int t = 1; t <= T; t++)
	{
		scanf("%d %d", &n, &m);
		for (int i = 0; i<m; i++)
		{
			scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].cost);
		}
		sort(e, e + m, cmp);
		top = -1;
		int ans1 = Kru(), ans2 = INF;
		for (int i = 0; i <= top; i++)
		{
			int x = edge[i];
			ans2 = min(ans2, Kru2(x));
		}
		if (ans1 == INF)
			printf("Case #%d : No way\n", t);
		else if (ans2 == INF)
			printf("Case #%d : No second way\n", t);
		else
			printf("Case #%d : %d\n", t, ans2);//次小生成树的长短~
	}
	return 0;
}

16 .无向图(可化为有向图)的最小环求法(至少3点) 

#include<iostream>  
#include<cstdio>  
#include<queue>  
using namespace std;  
#define inf 10000000  
int n, m, a, b, c;//注意这里不能用0x3f3f3f3f!!因为可能连续3个inf相加~~超出int范围  
int map[105][105];//来储存边的长度;  
int A[105][105];//a到b的最短边;  
int floyd()  
{  
    int minn = inf;  
    for (int s = 1; s <= n; s++)  
    {  
        for (int e = 1; e < s; e++)  
        {  
            for (int w = e + 1; w < s; w++)  
            {  
                int t = A[e][w] + map[e][s] + map[s][w];//点至少为3的环~~至于为什么用map~是因为用最小A的情况下可能会重复路径  
                if (t < minn)  
                {  
                    minn = t;  
                }  
            }  
        }  
        for (int e = 1; e <= n; e++)  
        {  
            for (int w = 1; w <= n; w++)  
            {  
                if (A[e][w] > A[e][s] + A[s][w])  
                {  
                    A[e][w] = A[e][s] + A[s][w];//更新~  
                }  
            }  
        }  
    }  
    return minn;  
}  
int main()  
{  
    while (cin >> n >> m)  
    {  
        for (int s = 1; s <= n; s++)  
        {  
            for (int e = 1; e <= n; e++)  
            {  
                map[s][e] = A[s][e] = inf;//初始化  
            }  
        }  
        for (int s = 1; s <= m; s++)  
        {  
            cin >> a >> b >> c;  
            map[a][b] = map[b][a] = A[a][b] = A[b][a] = min(map[a][b], c);//建图  
        }  
        int ans = floyd();  
        if (ans == inf)  
        {  
            cout << "It's impossible.\n";  
        }  
        else  
        {  
            cout << ans << endl;  
        }  
    }  
    return 0;  
}  

 

17. KM算法~~

 

#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3f
 
int n,nx,ny;
int link[M],lx[M],ly[M],slack[M];    //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int visx[M],visy[M],w[M][M];
 
int DFS(int x)
{
    visx[x] = 1;
    for (int y = 1;y <= ny;y ++)
    {
        if (visy[y])
            continue;
        int t = lx[x] + ly[y] - w[x][y];
        if (t == 0)       //
        {
            visy[y] = 1;
            if (link[y] == -1||DFS(link[y]))
            {
                link[y] = x;
                return 1;
            }
        }
        else if (slack[y] > t)  //不在相等子图中slack 取最小的
            slack[y] = t;
    }
    return 0;
}
int KM()
{
    int i,j;
    memset (link,-1,sizeof(link));
    memset (ly,0,sizeof(ly));
    for (i = 1;i <= nx;i ++)            //lx初始化为与它关联边中最大的
        for (j = 1,lx[i] = -inf;j <= ny;j ++)
            if (w[i][j] > lx[i])
                lx[i] = w[i][j];
 
    for (int x = 1;x <= nx;x ++)
    {
        for (i = 1;i <= ny;i ++)
            slack[i] = inf;
        while (1)
        {
            memset (visx,0,sizeof(visx));
            memset (visy,0,sizeof(visy));
            if (DFS(x))     //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广
                break;  //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。
                        //方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,
                        //所有在增广轨中的Y方点的标号全部加上一个常数d
            int d = inf;
            for (i = 1;i <= ny;i ++)
                if (!visy[i]&&d > slack[i])
                    d = slack[i];
            for (i = 1;i <= nx;i ++)
                if (visx[i])
                    lx[i] -= d;
            for (i = 1;i <= ny;i ++)  //修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d
                if (visy[i])
                    ly[i] += d;
                else
                    slack[i] -= d;
        }
    }
    int res = 0;
    for (i = 1;i <= ny;i ++)
        if (link[i] > -1)
            res += w[link[i]][i];
    return res;
}
int main ()
{
    int i,j;
    while (scanf ("%d",&n)!=EOF)
    {
        nx = ny = n;
      //  memset (w,0,sizeof(w));
        for (i = 1;i <= n;i ++)
            for (j = 1;j <= n;j ++)
                scanf ("%d",&w[i][j]);
        int ans = KM();
        printf ("%d\n",ans);
    }
    return 0;
}

18 . 字典树~求一堆数里面有多少所求前缀

#include<iostream>  
#include<cstring>  
#include<cstdio>  
#include<algorithm>  
#include<string>  
using namespace std;
int tree[200001][26], cnt, sum[200001];
int n, m;
string s;
void insert()
{
	int len = s.length();
	int rt = 0;
	for (int i = 0; i<len; i++)
		{
		    int id = s[i] - 'a';//这个节点的儿子~  
		    if (!tree[rt][id])//如果没有出现过~  
			    {
			        tree[rt][id] = ++cnt;//创造一个~  
			    }
		    sum[tree[rt][id]]++;//某个匹配成功的前缀数量是下个位置的sum~  
		    rt = tree[rt][id];//进位~进入下个节点  
		}
}
int search()
{
	int rt = 0;
	int len = s.length();
	for (int i = 0; i<len; i++)
		{
		    int id = s[i] - 'a';
		    if (!tree[rt][id]) return 0;//此时匹配失败~返0退出  
		    rt = tree[rt][id];//否则继续进位查找  
		}//rt经过此循环后变成前缀最后一个字母所在位置的后一个位置   
	return sum[rt];//因为前缀后移了一个保存,所以此时的sum[rt]就是要求的前缀出现的次数   
}
void init()
{
	memset(tree, 0, sizeof(tree));
	memset(sum, 0, sizeof(sum));
}
int main()
{
	init();
	scanf("%d", &n);
	for (int i = 1; i <= n; i++)
		{
		    cin >> s;
		    insert();
		}
	scanf("%d", &m);
	for (int i = 1; i <= m; i++)
		{
		    cin >> s;
		    printf("%d\n", search());
		}
	return 0;
}

 

19 . 最小费用最大流~

 

#include<bits/stdc++.h>
using namespace std;
//最小费用最大流,求最大费用只需要取相反数,结果取相反数即可。
//点的总数为 N,点的编号 0~N-1
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to,next,cap,flow,cost;
} edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
    N = n;
    tol = 0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
    edge[tol].to = v;
    edge[tol].cap = cap;
    edge[tol].cost = cost;
    edge[tol].flow = 0;
    edge[tol].next = head[u];
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = 0;
    edge[tol].cost = -cost;
    edge[tol].flow = 0;
    edge[tol].next = head[v];
    head[v] = tol++;
}
bool spfa(int s,int t)
{
    queue<int>q;
    for(int i = 0; i < N; i++)
    {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if(edge[i].cap > edge[i].flow &&
                    dis[v] > dis[u] + edge[i].cost )
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t] == -1)return false;
    else return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s,int t,int &cost)
{
    int flow = 0;
    cost = 0;
    while(spfa(s,t))
    {
        int Min = INF;
        for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
        {
            if(Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        }
        for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
        {
            edge[i].flow += Min;
            edge[i^1].flow -= Min;
            cost += edge[i].cost * Min;
        }
        flow += Min;
    }
    return flow;
}

20 . 倍增的lca算法~

#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=230100;
const int DEG=20;
struct ***
{
    int to,ne,len;
}ed[maxn*2];
int head[maxn],cnt;
int dis[maxn];//计算距离;
void add(int u,int v,int w)
{
    ed[cnt].to=v;
    ed[cnt].len=w;
    ed[cnt].ne=head[u];
    head[u]=cnt++;
}
void init()
{
    cnt=1;
    memset(head,-1,sizeof(head));
    memset(dis,0,sizeof(dis));
}
int fa[maxn][DEG];
int deg[maxn];//深度数组
void BFS(int root)
{
    queue<int>q;
    deg[root]=0;
    fa[root][0]=root;
    q.push(root);
    dis[root]=0;//
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        for(int s=1;s<DEG;s++)
        {
            fa[t][s]=fa[fa[t][s-1]][s-1];
        }
        for(int s=head[t];s!=-1;s=ed[s].ne)
        {
            int v=ed[s].to;
            if(v==fa[t][0])
            {
                continue;
            }
            deg[v]=deg[t]+1;
            dis[v]=dis[t]+ed[s].len;//
            fa[v][0]=t;
            q.push(v);
        }
    }
}
int LCA(int u,int v)
{
    if(deg[u]>deg[v])
    {
        swap(u,v);
    }
    int hu=deg[u],hv=deg[v];
    int tu=u,tv=v;
    for(int det=hv-hu,s=0;det;det>>=1,s++)
    {
        if(det&1)
        {
            tv=fa[tv][s];
        }
    }
    if(tu==tv)
    {
        return tu;
    }
    for(int s=DEG-1;s>=0;s--)
    {
        if(fa[tu][s]==fa[tv][s])
        {
            continue;
        }
        tu=fa[tu][s];
        tv=fa[tv][s];
    }
    return fa[tu][0];
}
bool in[maxn];
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);//一般图都是n-1个边的;这里用m代替;
    init();
    memset(in,0,sizeof(in));
    for(int s=1;s<=m;s++)
    {
        int a,b,c;
        
        scanf("%d%d%d",&a,&b,&c);//这里c是指有边权的lca~来求关于lca的距离的操作的
        add(a,b,c);
        add(b,a,c);
        in[b]=1;
    }
    int root;
    for(int s=1;s<=n;s++)
    {
        if(!in[s])
        {
            root=s;
            break;
        }
    }
    BFS(root);
    int te;
    cin>>te;
    while(te--)
    {
        int u,v;
        scanf("%d%d",&u,&v);
      //  cout<<LCA(u,v)<<endl;
        cout<<dis[u]+dis[v]-2*dis[LCA(u,v)]<<endl;
    }
    return 0;
}




















 

21. 2-SAT (给定N个组,每个组有两个点,某些点不相容,从每个组选一个点问怎么选出相容的N个点)

 

#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 20000 + 10;
const int maxm = 1e5 + 10;
struct Edge
{
	int to, next;
}edge[maxm];
int head[maxn], cnt;
void ini()
{
	cnt = 0;
	memset(head, -1, sizeof(head));
}
void addedge(int u, int v)
{
	edge[cnt].to = v; edge[cnt].next = head[u]; head[u] = cnt++;
}
//染色标记,为true表示选择 
bool vis[maxn];
//栈 
int S[maxn], top;

bool dfs(int u)
{
	//如果u和他的反点被同时选中,那么这个图无解 
	if (vis[u ^ 1])
		return false;
	//如果有环且不经过u的反向点,那么该解成立 
	if (vis[u])
		return true;
	vis[u] = true;
	S[top++] = u;
	for (int i = head[u]; i != -1; i = edge[i].next)
	{
		if (!dfs(edge[i].to))
			return false;
	}
	//u开始的有向路径无环得到一个可行的解 
	return true;
}
bool Twosat(int n) 
{
	memset(vis, false, sizeof(vis));
	//找字典序最小的解 
	for (int i = 0; i<n; i += 2)
	{
		if (vis[i] || vis[i ^ 1])
			continue;
		top = 0;
		//以i为起点选择,如果i的反点在同一个环中, 
		if (!dfs(i))
		{
			//回溯 
			while (top)
				vis[S[--top]] = false;
			//判定以i的反点开始是否存在可行解 
			if (!dfs(i ^ 1))
				//不存在返回false 
				return false;
		}
	}
	//整个图存在可行解 
	return true;
}

int main()
{
	int n, m;
	int u, v;
	while (scanf("%d%d", &n, &m) == 2)
	{
		ini();
		while (m--)
		{
			scanf("%d%d", &u, &v);
			u--, v--;
			//从0开始标号,异或值表示反向点或者反向边 
			addedge(u, v ^ 1);
			addedge(v, u ^ 1);
		}
		//判断该2-sat问题是否有解 
		if (Twosat(2 * n))
		{
			for (int i = 0; i< 2 * n; i++)
				//字典序最小的解 
				if (vis[i])
					printf("%d\n", i + 1);
		}
		else printf("NIE\n");
	}
	return 0;
}