package java.util;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;

import sun.misc.SharedSecrets;

//动态数组,线程不安全,允许null,但在压缩过程中null会被清除掉
public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    private static final long serialVersionUID = 8683452581122892189L;
    //默认数组长度
    private static final int DEFAULT_CAPACITY = 10;
    //存储数组
    private static final Object[] EMPTY_ELEMENTDATA = {};

    //用于默认大小的空实例的共享空数组实例。与EMPTY_ELEMENTDATA区分,以知道在添加第一个元素时初始化容量。
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    //存储缓冲区
    transient Object[] elementData; // non-private to simplify nested class access

    ///动态数组的容量
    private int size;

    //指定容量构造动态数组
    public ArrayList(int initialCapacity){
        if(initialCapacity > 0){
            this.elementData = new Object[initialCapacity];
        }else if(initialCapacity == 0){
            this.elementData = EMPTY_ELEMENTDATA;
        }else{
            throw new IllegalArgumentException("Illegal Capacity: " +
                                               initialCapacity);
        }
    }


    public ArrayList(){
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

    //由另外一个容器构造动态数组,通过toArray和copy来构造的
    public ArrayList(Collection<? extends E> c){
        elementData = c.toArray();
        if((size = elementData.length) != 0){
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if(elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        }else{
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

    //去除没有存储数据的部分
    public void trimToSize(){
        modCount++;
        if(size < elementData.length){
            elementData = (size == 0)
                    ? EMPTY_ELEMENTDATA
                    : Arrays.copyOf(elementData, size);
        }
    }

    //    如果需要,增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。
    public void ensureCapacity(int minCapacity){
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
                // any size if not default element table
                ? 0
                // larger than default for default empty table. It's already
                // supposed to be at default size.
                : DEFAULT_CAPACITY;

        if(minCapacity > minExpand){
            ensureExplicitCapacity(minCapacity);
        }
    }

    private static int calculateCapacity(Object[] elementData, int minCapacity){
        if(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA){
            return Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        return minCapacity;
    }

    private void ensureCapacityInternal(int minCapacity){
        ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
    }

    private void ensureExplicitCapacity(int minCapacity){
        modCount++;

        // overflow-conscious code
        if(minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    //最大的数组大小
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    //增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。
    //增加尺寸为length/2
    private void grow(int minCapacity){
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if(newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if(newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    //最大容量
    private static int hugeCapacity(int minCapacity){
        if(minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }


    public int size(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    public boolean contains(Object o){
        return indexOf(o) >= 0;
    }

    public int indexOf(Object o){
        if(o == null){
            for(int i = 0; i < size; i++){
                if(elementData[i] == null)
                    return i;
            }
        }else{
            for(int i = 0; i < size; i++){
                if(o.equals(elementData[i]))
                    return i;
            }
        }
        return -1;
    }

    public int lastIndexOf(Object o){
        if(o == null){
            for(int i = size - 1; i >= 0; i--){
                if(elementData[i] == null)
                    return i;
            }
        }else{
            for(int i = size - 1; i >= 0; i--){
                if(o.equals(elementData[i]))
                    return i;
            }
        }
        return -1;
    }

    public Object clone(){
        try {
            ArrayList<?> v = (ArrayList<?>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    public Object[] toArray(){
        return Arrays.copyOf(elementData, size);
    }

    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a){
        if(a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if(a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index){
        return (E) elementData[index];
    }

    public E get(int index){
        rangeCheck(index);

        return elementData(index);
    }

    public E set(int index, E element){
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    public boolean add(E e){
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

    public void add(int index, E element){
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

    public E remove(int index){
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if(numMoved > 0)
            System.arraycopy(elementData, index + 1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

    //调用的时fastRemove
    public boolean remove(Object o){
        if(o == null){
            for(int index = 0; index < size; index++){
                if(elementData[index] == null){ //移除了null,碎片整理
                    fastRemove(index);
                    return true;
                }
            }
        }else{
            for(int index = 0; index < size; index++){
                if(o.equals(elementData[index])){//找到对象o
                    fastRemove(index);
                    return true;
                }
            }
        }
        return false;
    }

    // System.arraycopy来实现移除指定元素
    private void fastRemove(int index){
        modCount++;
        int numMoved = size - index - 1;
        if(numMoved > 0)
            System.arraycopy(elementData, index + 1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    //赋值为null,通过GC来回收
    public void clear(){
        modCount++;

        // clear to let GC do its work
        for(int i = 0; i < size; i++){ elementData[i] = null; }

        size = 0;
    }

    //System.arraycopy
    public boolean addAll(Collection<? extends E> c){
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

    public boolean addAll(int index, Collection<? extends E> c){
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if(numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

    protected void removeRange(int fromIndex, int toIndex){
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex - fromIndex);
        for(int i = newSize; i < size; i++){
            elementData[i] = null;
        }
        size = newSize;
    }

    private void rangeCheck(int index){
        if(index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index){
        if(index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private String outOfBoundsMsg(int index){
        return "Index: " + index + ", Size: " + size;
    }

    //通过batchRemove
    public boolean removeAll(Collection<?> c){
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }

    //通过batchRemove
    public boolean retainAll(Collection<?> c){
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }

    // complement标记移除this还是c,true表示求交,false表示求差this-C
    private boolean batchRemove(Collection<?> c, boolean complement){
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for(; r < size; r++){
                if(c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
            }
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if(r != size){
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if(w != size){
                // clear to let GC do its work
                for(int i = w; i < size; i++){ elementData[i] = null; }
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    //写入到流
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for(int i = 0; i < size; i++){
            s.writeObject(elementData[i]);
        }

        if(modCount != expectedModCount){ //并发异常
            throw new ConcurrentModificationException();
        }
    }

    //从流中读
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException{
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if(size > 0){
            // be like clone(), allocate array based upon size not capacity
            int capacity = calculateCapacity(elementData, size);
            SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for(int i = 0; i < size; i++){
                a[i] = s.readObject();
            }
        }
    }

    //从index开始的迭代器,通过内部类ListItr实现
    public ListIterator<E> listIterator(int index){
        if(index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: " + index);
        return new ListItr(index);
    }

    //从0开始的迭代器,通过内部类ListItr实现
    public ListIterator<E> listIterator(){
        return new ListItr(0);
    }

    //迭代器,内部类Itr实现
    public Iterator<E> iterator(){
        return new Itr();
    }

    //内部类,迭代器
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        Itr(){}

        public boolean hasNext(){
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next(){
            checkForComodification();
            int i = cursor;
            if(i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if(i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

        public void remove(){
            if(lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> consumer){
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if(i >= size){
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if(i >= elementData.length){
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }

        final void checkForComodification(){
            if(modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    //内部类,迭代器,对Itr进行了优化
    private class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index){
            super();
            cursor = index;
        }

        public boolean hasPrevious(){
            return cursor != 0;
        }

        public int nextIndex(){
            return cursor;
        }

        public int previousIndex(){
            return cursor - 1;
        }

        @SuppressWarnings("unchecked")
        public E previous(){
            checkForComodification();
            int i = cursor - 1;
            if(i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if(i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        }

        public void set(E e){
            if(lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.set(lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e){
            checkForComodification();

            try {
                int i = cursor;
                ArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }

    //子Lsit,通过Sublist内部类实现
    public List<E> subList(int fromIndex, int toIndex){
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    }

    //sublists的异常检测
    static void subListRangeCheck(int fromIndex, int toIndex, int size){
        if(fromIndex < 0)
            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
        if(toIndex > size)
            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
        if(fromIndex > toIndex)
            throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                               ") > toIndex(" + toIndex + ")");
    }

    //Lsit切片内部类,
    private class SubList extends AbstractList<E> implements RandomAccess {
        private final AbstractList<E> parent;
        private final int parentOffset;
        private final int offset;
        int size;

        SubList(AbstractList<E> parent,
                int offset, int fromIndex, int toIndex){
            this.parent = parent;
            this.parentOffset = fromIndex;
            this.offset = offset + fromIndex;
            this.size = toIndex - fromIndex;
            this.modCount = ArrayList.this.modCount;
        }

        public E set(int index, E e){
            rangeCheck(index);
            checkForComodification();
            E oldValue = ArrayList.this.elementData(offset + index);
            ArrayList.this.elementData[offset + index] = e;
            return oldValue;
        }

        public E get(int index){
            rangeCheck(index);
            checkForComodification();
            return ArrayList.this.elementData(offset + index);
        }

        public int size(){
            checkForComodification();
            return this.size;
        }

        public void add(int index, E e){
            rangeCheckForAdd(index);
            checkForComodification();
            parent.add(parentOffset + index, e);
            this.modCount = parent.modCount;
            this.size++;
        }

        public E remove(int index){
            rangeCheck(index);
            checkForComodification();
            E result = parent.remove(parentOffset + index);
            this.modCount = parent.modCount;
            this.size--;
            return result;
        }

        protected void removeRange(int fromIndex, int toIndex){
            checkForComodification();
            parent.removeRange(parentOffset + fromIndex,
                               parentOffset + toIndex);
            this.modCount = parent.modCount;
            this.size -= toIndex - fromIndex;
        }

        public boolean addAll(Collection<? extends E> c){
            return addAll(this.size, c);
        }

        public boolean addAll(int index, Collection<? extends E> c){
            rangeCheckForAdd(index);
            int cSize = c.size();
            if(cSize == 0)
                return false;

            checkForComodification();
            parent.addAll(parentOffset + index, c);
            this.modCount = parent.modCount;
            this.size += cSize;
            return true;
        }

        public Iterator<E> iterator(){
            return listIterator();
        }

        public ListIterator<E> listIterator(final int index){
            checkForComodification();
            rangeCheckForAdd(index);
            final int offset = this.offset;

            return new ListIterator<E>() {
                int cursor = index;
                int lastRet = -1;
                int expectedModCount = ArrayList.this.modCount;

                public boolean hasNext(){
                    return cursor != SubList.this.size;
                }

                @SuppressWarnings("unchecked")
                public E next(){
                    checkForComodification();
                    int i = cursor;
                    if(i >= SubList.this.size)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if(offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i + 1;
                    return (E) elementData[offset + (lastRet = i)];
                }

                public boolean hasPrevious(){
                    return cursor != 0;
                }

                @SuppressWarnings("unchecked")
                public E previous(){
                    checkForComodification();
                    int i = cursor - 1;
                    if(i < 0)
                        throw new NoSuchElementException();
                    Object[] elementData = ArrayList.this.elementData;
                    if(offset + i >= elementData.length)
                        throw new ConcurrentModificationException();
                    cursor = i;
                    return (E) elementData[offset + (lastRet = i)];
                }

                @SuppressWarnings("unchecked")
                public void forEachRemaining(Consumer<? super E> consumer){
                    Objects.requireNonNull(consumer);
                    final int size = SubList.this.size;
                    int i = cursor;
                    if(i >= size){
                        return;
                    }
                    final Object[] elementData = ArrayList.this.elementData;
                    if(offset + i >= elementData.length){
                        throw new ConcurrentModificationException();
                    }
                    while (i != size && modCount == expectedModCount) {
                        consumer.accept((E) elementData[offset + (i++)]);
                    }
                    // update once at end of iteration to reduce heap write traffic
                    lastRet = cursor = i;
                    checkForComodification();
                }

                public int nextIndex(){
                    return cursor;
                }

                public int previousIndex(){
                    return cursor - 1;
                }

                public void remove(){
                    if(lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        SubList.this.remove(lastRet);
                        cursor = lastRet;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void set(E e){
                    if(lastRet < 0)
                        throw new IllegalStateException();
                    checkForComodification();

                    try {
                        ArrayList.this.set(offset + lastRet, e);
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                public void add(E e){
                    checkForComodification();

                    try {
                        int i = cursor;
                        SubList.this.add(i, e);
                        cursor = i + 1;
                        lastRet = -1;
                        expectedModCount = ArrayList.this.modCount;
                    } catch (IndexOutOfBoundsException ex) {
                        throw new ConcurrentModificationException();
                    }
                }

                final void checkForComodification(){
                    if(expectedModCount != ArrayList.this.modCount)
                        throw new ConcurrentModificationException();
                }
            };
        }

        public List<E> subList(int fromIndex, int toIndex){
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, offset, fromIndex, toIndex);
        }

        private void rangeCheck(int index){
            if(index < 0 || index >= this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private void rangeCheckForAdd(int index){
            if(index < 0 || index > this.size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }

        private String outOfBoundsMsg(int index){
            return "Index: " + index + ", Size: " + this.size;
        }

        private void checkForComodification(){
            if(ArrayList.this.modCount != this.modCount)
                throw new ConcurrentModificationException();
        }

        public Spliterator<E> spliterator(){
            checkForComodification();
            return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                               offset + this.size, this.modCount);
        }
    }


    // forEach方法,通过函数接口,对每一个元素都执行action
    @Override
    public void forEach(Consumer<? super E> action){
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for(int i = 0; modCount == expectedModCount && i < size; i++){
            action.accept(elementData[i]);
        }
        if(modCount != expectedModCount){
            throw new ConcurrentModificationException();
        }
    }

    //分割迭代器,通过静态内部类实现
    @Override
    public Spliterator<E> spliterator(){
        return new ArrayListSpliterator<>(this, 0, -1, 0);
    }

    //分割迭代器的静态内部类
    static final class ArrayListSpliterator<E> implements Spliterator<E> {

        /*
         * If ArrayLists were immutable, or structurally immutable (no
         * adds, removes, etc), we could implement their spliterators
         * with Arrays.spliterator. Instead we detect as much
         * interference during traversal as practical without
         * sacrificing much performance. We rely primarily on
         * modCounts. These are not guaranteed to detect concurrency
         * violations, and are sometimes overly conservative about
         * within-thread interference, but detect enough problems to
         * be worthwhile in practice. To carry this out, we (1) lazily
         * initialize fence and expectedModCount until the latest
         * point that we need to commit to the state we are checking
         * against; thus improving precision.  (This doesn't apply to
         * SubLists, that create spliterators with current non-lazy
         * values).  (2) We perform only a single
         * ConcurrentModificationException check at the end of forEach
         * (the most performance-sensitive method). When using forEach
         * (as opposed to iterators), we can normally only detect
         * interference after actions, not before. Further
         * CME-triggering checks apply to all other possible
         * violations of assumptions for example null or too-small
         * elementData array given its size(), that could only have
         * occurred due to interference.  This allows the inner loop
         * of forEach to run without any further checks, and
         * simplifies lambda-resolution. While this does entail a
         * number of checks, note that in the common case of
         * list.stream().forEach(a), no checks or other computation
         * occur anywhere other than inside forEach itself.  The other
         * less-often-used methods cannot take advantage of most of
         * these streamlinings.
         */

        private final ArrayList<E> list;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /**
         * Create new spliterator covering the given  range
         */
        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                int expectedModCount){
            this.list = list; // OK if null unless traversed
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence(){ // initialize fence to size on first use
            int hi; // (a specialized variant appears in method forEach)
            ArrayList<E> lst;
            if((hi = fence) < 0){
                if((lst = list) == null)
                    hi = fence = 0;
                else{
                    expectedModCount = lst.modCount;
                    hi = fence = lst.size;
                }
            }
            return hi;
        }

        public ArrayListSpliterator<E> trySplit(){
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null : // divide range in half unless too small
                    new ArrayListSpliterator<E>(list, lo, index = mid,
                                                expectedModCount);
        }

        public boolean tryAdvance(Consumer<? super E> action){
            if(action == null)
                throw new NullPointerException();
            int hi = getFence(), i = index;
            if(i < hi){
                index = i + 1;
                @SuppressWarnings("unchecked") E e = (E) list.elementData[i];
                action.accept(e);
                if(list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public void forEachRemaining(Consumer<? super E> action){
            int i, hi, mc; // hoist accesses and checks from loop
            ArrayList<E> lst;
            Object[] a;
            if(action == null)
                throw new NullPointerException();
            if((lst = list) != null && (a = lst.elementData) != null){
                if((hi = fence) < 0){
                    mc = lst.modCount;
                    hi = lst.size;
                }else
                    mc = expectedModCount;
                if((i = index) >= 0 && (index = hi) <= a.length){
                    for(; i < hi; ++i){
                        @SuppressWarnings("unchecked") E e = (E) a[i];
                        action.accept(e);
                    }
                    if(lst.modCount == mc)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize(){
            return (long) (getFence() - index);
        }

        public int characteristics(){
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

    //    删除满足给定谓词的此集合的所有元素,通过filter过滤器实现
    @Override
    public boolean removeIf(Predicate<? super E> filter){
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        final int size = this.size;
        for(int i = 0; modCount == expectedModCount && i < size; i++){
            @SuppressWarnings("unchecked") final E element = (E) elementData[i];
            if(filter.test(element)){
                removeSet.set(i);
                removeCount++;
            }
        }
        if(modCount != expectedModCount){
            throw new ConcurrentModificationException();
        }

        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if(anyToRemove){
            final int newSize = size - removeCount;
            for(int i = 0, j = 0; (i < size) && (j < newSize); i++, j++){
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for(int k = newSize; k < size; k++){
                elementData[k] = null;  // Let gc do its work
            }
            this.size = newSize;
            if(modCount != expectedModCount){
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void replaceAll(UnaryOperator<E> operator){
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = this.size;
        for(int i = 0; modCount == expectedModCount && i < size; i++){
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if(modCount != expectedModCount){
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c){
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if(modCount != expectedModCount){
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
}