package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; import sun.misc.SharedSecrets; //动态数组,线程不安全,允许null,但在压缩过程中null会被清除掉 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; //默认数组长度 private static final int DEFAULT_CAPACITY = 10; //存储数组 private static final Object[] EMPTY_ELEMENTDATA = {}; //用于默认大小的空实例的共享空数组实例。与EMPTY_ELEMENTDATA区分,以知道在添加第一个元素时初始化容量。 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; //存储缓冲区 transient Object[] elementData; // non-private to simplify nested class access ///动态数组的容量 private int size; //指定容量构造动态数组 public ArrayList(int initialCapacity){ if(initialCapacity > 0){ this.elementData = new Object[initialCapacity]; }else if(initialCapacity == 0){ this.elementData = EMPTY_ELEMENTDATA; }else{ throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity); } } public ArrayList(){ this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } //由另外一个容器构造动态数组,通过toArray和copy来构造的 public ArrayList(Collection<? extends E> c){ elementData = c.toArray(); if((size = elementData.length) != 0){ // c.toArray might (incorrectly) not return Object[] (see 6260652) if(elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); }else{ // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } } //去除没有存储数据的部分 public void trimToSize(){ modCount++; if(size < elementData.length){ elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } // 如果需要,增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。 public void ensureCapacity(int minCapacity){ int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It's already // supposed to be at default size. : DEFAULT_CAPACITY; if(minCapacity > minExpand){ ensureExplicitCapacity(minCapacity); } } private static int calculateCapacity(Object[] elementData, int minCapacity){ if(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA){ return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; } private void ensureCapacityInternal(int minCapacity){ ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } private void ensureExplicitCapacity(int minCapacity){ modCount++; // overflow-conscious code if(minCapacity - elementData.length > 0) grow(minCapacity); } //最大的数组大小 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。 //增加尺寸为length/2 private void grow(int minCapacity){ // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if(newCapacity - minCapacity < 0) newCapacity = minCapacity; if(newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } //最大容量 private static int hugeCapacity(int minCapacity){ if(minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } public int size(){ return size; } public boolean isEmpty(){ return size == 0; } public boolean contains(Object o){ return indexOf(o) >= 0; } public int indexOf(Object o){ if(o == null){ for(int i = 0; i < size; i++){ if(elementData[i] == null) return i; } }else{ for(int i = 0; i < size; i++){ if(o.equals(elementData[i])) return i; } } return -1; } public int lastIndexOf(Object o){ if(o == null){ for(int i = size - 1; i >= 0; i--){ if(elementData[i] == null) return i; } }else{ for(int i = size - 1; i >= 0; i--){ if(o.equals(elementData[i])) return i; } } return -1; } public Object clone(){ try { ArrayList<?> v = (ArrayList<?>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } public Object[] toArray(){ return Arrays.copyOf(elementData, size); } @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a){ if(a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if(a.length > size) a[size] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index){ return (E) elementData[index]; } public E get(int index){ rangeCheck(index); return elementData(index); } public E set(int index, E element){ rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } public boolean add(E e){ ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } public void add(int index, E element){ rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } public E remove(int index){ rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if(numMoved > 0) System.arraycopy(elementData, index + 1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; } //调用的时fastRemove public boolean remove(Object o){ if(o == null){ for(int index = 0; index < size; index++){ if(elementData[index] == null){ //移除了null,碎片整理 fastRemove(index); return true; } } }else{ for(int index = 0; index < size; index++){ if(o.equals(elementData[index])){//找到对象o fastRemove(index); return true; } } } return false; } // System.arraycopy来实现移除指定元素 private void fastRemove(int index){ modCount++; int numMoved = size - index - 1; if(numMoved > 0) System.arraycopy(elementData, index + 1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } //赋值为null,通过GC来回收 public void clear(){ modCount++; // clear to let GC do its work for(int i = 0; i < size; i++){ elementData[i] = null; } size = 0; } //System.arraycopy public boolean addAll(Collection<? extends E> c){ Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } public boolean addAll(int index, Collection<? extends E> c){ rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if(numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } protected void removeRange(int fromIndex, int toIndex){ modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex - fromIndex); for(int i = newSize; i < size; i++){ elementData[i] = null; } size = newSize; } private void rangeCheck(int index){ if(index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index){ if(index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index){ return "Index: " + index + ", Size: " + size; } //通过batchRemove public boolean removeAll(Collection<?> c){ Objects.requireNonNull(c); return batchRemove(c, false); } //通过batchRemove public boolean retainAll(Collection<?> c){ Objects.requireNonNull(c); return batchRemove(c, true); } // complement标记移除this还是c,true表示求交,false表示求差this-C private boolean batchRemove(Collection<?> c, boolean complement){ final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for(; r < size; r++){ if(c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if(r != size){ System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if(w != size){ // clear to let GC do its work for(int i = w; i < size; i++){ elementData[i] = null; } modCount += size - w; size = w; modified = true; } } return modified; } //写入到流 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for(int i = 0; i < size; i++){ s.writeObject(elementData[i]); } if(modCount != expectedModCount){ //并发异常 throw new ConcurrentModificationException(); } } //从流中读 private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException{ elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if(size > 0){ // be like clone(), allocate array based upon size not capacity int capacity = calculateCapacity(elementData, size); SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity); ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for(int i = 0; i < size; i++){ a[i] = s.readObject(); } } } //从index开始的迭代器,通过内部类ListItr实现 public ListIterator<E> listIterator(int index){ if(index < 0 || index > size) throw new IndexOutOfBoundsException("Index: " + index); return new ListItr(index); } //从0开始的迭代器,通过内部类ListItr实现 public ListIterator<E> listIterator(){ return new ListItr(0); } //迭代器,内部类Itr实现 public Iterator<E> iterator(){ return new Itr(); } //内部类,迭代器 private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; Itr(){} public boolean hasNext(){ return cursor != size; } @SuppressWarnings("unchecked") public E next(){ checkForComodification(); int i = cursor; if(i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if(i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove(){ if(lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer){ Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if(i >= size){ return; } final Object[] elementData = ArrayList.this.elementData; if(i >= elementData.length){ throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification(){ if(modCount != expectedModCount) throw new ConcurrentModificationException(); } } //内部类,迭代器,对Itr进行了优化 private class ListItr extends Itr implements ListIterator<E> { ListItr(int index){ super(); cursor = index; } public boolean hasPrevious(){ return cursor != 0; } public int nextIndex(){ return cursor; } public int previousIndex(){ return cursor - 1; } @SuppressWarnings("unchecked") public E previous(){ checkForComodification(); int i = cursor - 1; if(i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if(i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e){ if(lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e){ checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } //子Lsit,通过Sublist内部类实现 public List<E> subList(int fromIndex, int toIndex){ subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } //sublists的异常检测 static void subListRangeCheck(int fromIndex, int toIndex, int size){ if(fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if(toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if(fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } //Lsit切片内部类, private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex){ this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e){ rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index){ rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size(){ checkForComodification(); return this.size; } public void add(int index, E e){ rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index){ rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex){ checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c){ return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c){ rangeCheckForAdd(index); int cSize = c.size(); if(cSize == 0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator(){ return listIterator(); } public ListIterator<E> listIterator(final int index){ checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext(){ return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next(){ checkForComodification(); int i = cursor; if(i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if(offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious(){ return cursor != 0; } @SuppressWarnings("unchecked") public E previous(){ checkForComodification(); int i = cursor - 1; if(i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if(offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer){ Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if(i >= size){ return; } final Object[] elementData = ArrayList.this.elementData; if(offset + i >= elementData.length){ throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex(){ return cursor; } public int previousIndex(){ return cursor - 1; } public void remove(){ if(lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e){ if(lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e){ checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification(){ if(expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex){ subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index){ if(index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index){ if(index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index){ return "Index: " + index + ", Size: " + this.size; } private void checkForComodification(){ if(ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator<E> spliterator(){ checkForComodification(); return new ArrayListSpliterator<E>(ArrayList.this, offset, offset + this.size, this.modCount); } } // forEach方法,通过函数接口,对每一个元素都执行action @Override public void forEach(Consumer<? super E> action){ Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for(int i = 0; modCount == expectedModCount && i < size; i++){ action.accept(elementData[i]); } if(modCount != expectedModCount){ throw new ConcurrentModificationException(); } } //分割迭代器,通过静态内部类实现 @Override public Spliterator<E> spliterator(){ return new ArrayListSpliterator<>(this, 0, -1, 0); } //分割迭代器的静态内部类 static final class ArrayListSpliterator<E> implements Spliterator<E> { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn't apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private final ArrayList<E> list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** * Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList<E> list, int origin, int fence, int expectedModCount){ this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence(){ // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList<E> lst; if((hi = fence) < 0){ if((lst = list) == null) hi = fence = 0; else{ expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator<E> trySplit(){ int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator<E>(list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer<? super E> action){ if(action == null) throw new NullPointerException(); int hi = getFence(), i = index; if(i < hi){ index = i + 1; @SuppressWarnings("unchecked") E e = (E) list.elementData[i]; action.accept(e); if(list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer<? super E> action){ int i, hi, mc; // hoist accesses and checks from loop ArrayList<E> lst; Object[] a; if(action == null) throw new NullPointerException(); if((lst = list) != null && (a = lst.elementData) != null){ if((hi = fence) < 0){ mc = lst.modCount; hi = lst.size; }else mc = expectedModCount; if((i = index) >= 0 && (index = hi) <= a.length){ for(; i < hi; ++i){ @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if(lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize(){ return (long) (getFence() - index); } public int characteristics(){ return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } // 删除满足给定谓词的此集合的所有元素,通过filter过滤器实现 @Override public boolean removeIf(Predicate<? super E> filter){ Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for(int i = 0; modCount == expectedModCount && i < size; i++){ @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if(filter.test(element)){ removeSet.set(i); removeCount++; } } if(modCount != expectedModCount){ throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if(anyToRemove){ final int newSize = size - removeCount; for(int i = 0, j = 0; (i < size) && (j < newSize); i++, j++){ i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for(int k = newSize; k < size; k++){ elementData[k] = null; // Let gc do its work } this.size = newSize; if(modCount != expectedModCount){ throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator){ Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for(int i = 0; modCount == expectedModCount && i < size; i++){ elementData[i] = operator.apply((E) elementData[i]); } if(modCount != expectedModCount){ throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c){ final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if(modCount != expectedModCount){ throw new ConcurrentModificationException(); } modCount++; } }