package java.util;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
import sun.misc.SharedSecrets;
//动态数组,线程不安全,允许null,但在压缩过程中null会被清除掉
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = 8683452581122892189L;
//默认数组长度
private static final int DEFAULT_CAPACITY = 10;
//存储数组
private static final Object[] EMPTY_ELEMENTDATA = {};
//用于默认大小的空实例的共享空数组实例。与EMPTY_ELEMENTDATA区分,以知道在添加第一个元素时初始化容量。
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
//存储缓冲区
transient Object[] elementData; // non-private to simplify nested class access
///动态数组的容量
private int size;
//指定容量构造动态数组
public ArrayList(int initialCapacity){
if(initialCapacity > 0){
this.elementData = new Object[initialCapacity];
}else if(initialCapacity == 0){
this.elementData = EMPTY_ELEMENTDATA;
}else{
throw new IllegalArgumentException("Illegal Capacity: " +
initialCapacity);
}
}
public ArrayList(){
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
//由另外一个容器构造动态数组,通过toArray和copy来构造的
public ArrayList(Collection<? extends E> c){
elementData = c.toArray();
if((size = elementData.length) != 0){
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if(elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}else{
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
//去除没有存储数据的部分
public void trimToSize(){
modCount++;
if(size < elementData.length){
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
// 如果需要,增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。
public void ensureCapacity(int minCapacity){
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;
if(minCapacity > minExpand){
ensureExplicitCapacity(minCapacity);
}
}
private static int calculateCapacity(Object[] elementData, int minCapacity){
if(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA){
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureCapacityInternal(int minCapacity){
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private void ensureExplicitCapacity(int minCapacity){
modCount++;
// overflow-conscious code
if(minCapacity - elementData.length > 0)
grow(minCapacity);
}
//最大的数组大小
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//增加此 ArrayList实例的容量,以确保它可以至少保存最小容量参数指定的元素数。
//增加尺寸为length/2
private void grow(int minCapacity){
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if(newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if(newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
//最大容量
private static int hugeCapacity(int minCapacity){
if(minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
public int size(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
public boolean contains(Object o){
return indexOf(o) >= 0;
}
public int indexOf(Object o){
if(o == null){
for(int i = 0; i < size; i++){
if(elementData[i] == null)
return i;
}
}else{
for(int i = 0; i < size; i++){
if(o.equals(elementData[i]))
return i;
}
}
return -1;
}
public int lastIndexOf(Object o){
if(o == null){
for(int i = size - 1; i >= 0; i--){
if(elementData[i] == null)
return i;
}
}else{
for(int i = size - 1; i >= 0; i--){
if(o.equals(elementData[i]))
return i;
}
}
return -1;
}
public Object clone(){
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
public Object[] toArray(){
return Arrays.copyOf(elementData, size);
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a){
if(a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if(a.length > size)
a[size] = null;
return a;
}
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index){
return (E) elementData[index];
}
public E get(int index){
rangeCheck(index);
return elementData(index);
}
public E set(int index, E element){
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
public boolean add(E e){
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
public void add(int index, E element){
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
public E remove(int index){
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if(numMoved > 0)
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
//调用的时fastRemove
public boolean remove(Object o){
if(o == null){
for(int index = 0; index < size; index++){
if(elementData[index] == null){ //移除了null,碎片整理
fastRemove(index);
return true;
}
}
}else{
for(int index = 0; index < size; index++){
if(o.equals(elementData[index])){//找到对象o
fastRemove(index);
return true;
}
}
}
return false;
}
// System.arraycopy来实现移除指定元素
private void fastRemove(int index){
modCount++;
int numMoved = size - index - 1;
if(numMoved > 0)
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
//赋值为null,通过GC来回收
public void clear(){
modCount++;
// clear to let GC do its work
for(int i = 0; i < size; i++){ elementData[i] = null; }
size = 0;
}
//System.arraycopy
public boolean addAll(Collection<? extends E> c){
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
public boolean addAll(int index, Collection<? extends E> c){
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if(numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
protected void removeRange(int fromIndex, int toIndex){
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
int newSize = size - (toIndex - fromIndex);
for(int i = newSize; i < size; i++){
elementData[i] = null;
}
size = newSize;
}
private void rangeCheck(int index){
if(index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* A version of rangeCheck used by add and addAll.
*/
private void rangeCheckForAdd(int index){
if(index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index){
return "Index: " + index + ", Size: " + size;
}
//通过batchRemove
public boolean removeAll(Collection<?> c){
Objects.requireNonNull(c);
return batchRemove(c, false);
}
//通过batchRemove
public boolean retainAll(Collection<?> c){
Objects.requireNonNull(c);
return batchRemove(c, true);
}
// complement标记移除this还是c,true表示求交,false表示求差this-C
private boolean batchRemove(Collection<?> c, boolean complement){
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for(; r < size; r++){
if(c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
}
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if(r != size){
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if(w != size){
// clear to let GC do its work
for(int i = w; i < size; i++){ elementData[i] = null; }
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
//写入到流
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for(int i = 0; i < size; i++){
s.writeObject(elementData[i]);
}
if(modCount != expectedModCount){ //并发异常
throw new ConcurrentModificationException();
}
}
//从流中读
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException{
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if(size > 0){
// be like clone(), allocate array based upon size not capacity
int capacity = calculateCapacity(elementData, size);
SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for(int i = 0; i < size; i++){
a[i] = s.readObject();
}
}
}
//从index开始的迭代器,通过内部类ListItr实现
public ListIterator<E> listIterator(int index){
if(index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: " + index);
return new ListItr(index);
}
//从0开始的迭代器,通过内部类ListItr实现
public ListIterator<E> listIterator(){
return new ListItr(0);
}
//迭代器,内部类Itr实现
public Iterator<E> iterator(){
return new Itr();
}
//内部类,迭代器
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
Itr(){}
public boolean hasNext(){
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next(){
checkForComodification();
int i = cursor;
if(i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if(i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove(){
if(lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer){
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if(i >= size){
return;
}
final Object[] elementData = ArrayList.this.elementData;
if(i >= elementData.length){
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification(){
if(modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
//内部类,迭代器,对Itr进行了优化
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index){
super();
cursor = index;
}
public boolean hasPrevious(){
return cursor != 0;
}
public int nextIndex(){
return cursor;
}
public int previousIndex(){
return cursor - 1;
}
@SuppressWarnings("unchecked")
public E previous(){
checkForComodification();
int i = cursor - 1;
if(i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if(i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
public void set(E e){
if(lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e){
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
//子Lsit,通过Sublist内部类实现
public List<E> subList(int fromIndex, int toIndex){
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
//sublists的异常检测
static void subListRangeCheck(int fromIndex, int toIndex, int size){
if(fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if(toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if(fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
//Lsit切片内部类,
private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList<E> parent;
private final int parentOffset;
private final int offset;
int size;
SubList(AbstractList<E> parent,
int offset, int fromIndex, int toIndex){
this.parent = parent;
this.parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
}
public E set(int index, E e){
rangeCheck(index);
checkForComodification();
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
}
public E get(int index){
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
public int size(){
checkForComodification();
return this.size;
}
public void add(int index, E e){
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
}
public E remove(int index){
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
}
protected void removeRange(int fromIndex, int toIndex){
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
}
public boolean addAll(Collection<? extends E> c){
return addAll(this.size, c);
}
public boolean addAll(int index, Collection<? extends E> c){
rangeCheckForAdd(index);
int cSize = c.size();
if(cSize == 0)
return false;
checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
}
public Iterator<E> iterator(){
return listIterator();
}
public ListIterator<E> listIterator(final int index){
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset;
return new ListIterator<E>() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount;
public boolean hasNext(){
return cursor != SubList.this.size;
}
@SuppressWarnings("unchecked")
public E next(){
checkForComodification();
int i = cursor;
if(i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if(offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
}
public boolean hasPrevious(){
return cursor != 0;
}
@SuppressWarnings("unchecked")
public E previous(){
checkForComodification();
int i = cursor - 1;
if(i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if(offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer){
Objects.requireNonNull(consumer);
final int size = SubList.this.size;
int i = cursor;
if(i >= size){
return;
}
final Object[] elementData = ArrayList.this.elementData;
if(offset + i >= elementData.length){
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[offset + (i++)]);
}
// update once at end of iteration to reduce heap write traffic
lastRet = cursor = i;
checkForComodification();
}
public int nextIndex(){
return cursor;
}
public int previousIndex(){
return cursor - 1;
}
public void remove(){
if(lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void set(E e){
if(lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e){
checkForComodification();
try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification(){
if(expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
}
public List<E> subList(int fromIndex, int toIndex){
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
}
private void rangeCheck(int index){
if(index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index){
if(index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index){
return "Index: " + index + ", Size: " + this.size;
}
private void checkForComodification(){
if(ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
public Spliterator<E> spliterator(){
checkForComodification();
return new ArrayListSpliterator<E>(ArrayList.this, offset,
offset + this.size, this.modCount);
}
}
// forEach方法,通过函数接口,对每一个元素都执行action
@Override
public void forEach(Consumer<? super E> action){
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData;
final int size = this.size;
for(int i = 0; modCount == expectedModCount && i < size; i++){
action.accept(elementData[i]);
}
if(modCount != expectedModCount){
throw new ConcurrentModificationException();
}
}
//分割迭代器,通过静态内部类实现
@Override
public Spliterator<E> spliterator(){
return new ArrayListSpliterator<>(this, 0, -1, 0);
}
//分割迭代器的静态内部类
static final class ArrayListSpliterator<E> implements Spliterator<E> {
/*
* If ArrayLists were immutable, or structurally immutable (no
* adds, removes, etc), we could implement their spliterators
* with Arrays.spliterator. Instead we detect as much
* interference during traversal as practical without
* sacrificing much performance. We rely primarily on
* modCounts. These are not guaranteed to detect concurrency
* violations, and are sometimes overly conservative about
* within-thread interference, but detect enough problems to
* be worthwhile in practice. To carry this out, we (1) lazily
* initialize fence and expectedModCount until the latest
* point that we need to commit to the state we are checking
* against; thus improving precision. (This doesn't apply to
* SubLists, that create spliterators with current non-lazy
* values). (2) We perform only a single
* ConcurrentModificationException check at the end of forEach
* (the most performance-sensitive method). When using forEach
* (as opposed to iterators), we can normally only detect
* interference after actions, not before. Further
* CME-triggering checks apply to all other possible
* violations of assumptions for example null or too-small
* elementData array given its size(), that could only have
* occurred due to interference. This allows the inner loop
* of forEach to run without any further checks, and
* simplifies lambda-resolution. While this does entail a
* number of checks, note that in the common case of
* list.stream().forEach(a), no checks or other computation
* occur anywhere other than inside forEach itself. The other
* less-often-used methods cannot take advantage of most of
* these streamlinings.
*/
private final ArrayList<E> list;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
private int expectedModCount; // initialized when fence set
/**
* Create new spliterator covering the given range
*/
ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
int expectedModCount){
this.list = list; // OK if null unless traversed
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
private int getFence(){ // initialize fence to size on first use
int hi; // (a specialized variant appears in method forEach)
ArrayList<E> lst;
if((hi = fence) < 0){
if((lst = list) == null)
hi = fence = 0;
else{
expectedModCount = lst.modCount;
hi = fence = lst.size;
}
}
return hi;
}
public ArrayListSpliterator<E> trySplit(){
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null : // divide range in half unless too small
new ArrayListSpliterator<E>(list, lo, index = mid,
expectedModCount);
}
public boolean tryAdvance(Consumer<? super E> action){
if(action == null)
throw new NullPointerException();
int hi = getFence(), i = index;
if(i < hi){
index = i + 1;
@SuppressWarnings("unchecked") E e = (E) list.elementData[i];
action.accept(e);
if(list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
public void forEachRemaining(Consumer<? super E> action){
int i, hi, mc; // hoist accesses and checks from loop
ArrayList<E> lst;
Object[] a;
if(action == null)
throw new NullPointerException();
if((lst = list) != null && (a = lst.elementData) != null){
if((hi = fence) < 0){
mc = lst.modCount;
hi = lst.size;
}else
mc = expectedModCount;
if((i = index) >= 0 && (index = hi) <= a.length){
for(; i < hi; ++i){
@SuppressWarnings("unchecked") E e = (E) a[i];
action.accept(e);
}
if(lst.modCount == mc)
return;
}
}
throw new ConcurrentModificationException();
}
public long estimateSize(){
return (long) (getFence() - index);
}
public int characteristics(){
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
// 删除满足给定谓词的此集合的所有元素,通过filter过滤器实现
@Override
public boolean removeIf(Predicate<? super E> filter){
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for(int i = 0; modCount == expectedModCount && i < size; i++){
@SuppressWarnings("unchecked") final E element = (E) elementData[i];
if(filter.test(element)){
removeSet.set(i);
removeCount++;
}
}
if(modCount != expectedModCount){
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if(anyToRemove){
final int newSize = size - removeCount;
for(int i = 0, j = 0; (i < size) && (j < newSize); i++, j++){
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for(int k = newSize; k < size; k++){
elementData[k] = null; // Let gc do its work
}
this.size = newSize;
if(modCount != expectedModCount){
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator<E> operator){
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for(int i = 0; modCount == expectedModCount && i < size; i++){
elementData[i] = operator.apply((E) elementData[i]);
}
if(modCount != expectedModCount){
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator<? super E> c){
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if(modCount != expectedModCount){
throw new ConcurrentModificationException();
}
modCount++;
}
}