A. PizzaForces
PS C:\Users\jiang> 8/20 0.4 PS C:\Users\jiang> 10/25 0.4 PS C:\Users\jiang> 6/15 0.4 PS C:\Users\jiang> 1/0.4 2.5
- 无论选择订购何种披萨,其性价比都是一样的
- 6/8/10能组成任意大于10的偶数
T = int(input()) for _ in range(T): n = int(input()) if n <= 6: print(15) elif n <= 8: print(20) elif n <= 10: print(25) else: if n & 1: n += 1 print(n // 2 * 5)
如果这道题没有找规律,而是寻求一般解法的话,将会考虑一个线性回归问题:在满足的前提下,使得 尽可能小
B. Two Tables
要放两张桌子,第一张桌子已经放下,给定空间大小,问第一张桌子的最小移动距离。
枚举四个方向是很容易想到的,但是归并处理,将代码简洁表示,才是重点。
T = int(input()) for _ in range(T): W, H = map(int, input().split()) x1, y1, x2, y2 = map(int, input().split()) w, h = map(int, input().split()) ans = 10**8 if x2 - x1 + w <= W: # 水平方向 ans = min(ans, max(0, w - x1))## 第二块放左边 ans = min(ans, max(0, x2 - (W - w)))# 第二块放右边 if y2 - y1 + h <= H: # 竖直方向 ans = min(ans, max(0, h - y1)) # 第二块放下边 ans = min(ans, max(0, y2 - (H - h))) # 第二块放上边 if ans == 10**8: ans = -1 print(ans)
C. Coin Rows
T = int(input()) for _ in range(T): n = int(input()) a = [] a.append(list(map(int, input().split()))) a.append(list(map(int, input().split()))) s0, s1 = sum(a[0]), sum(a[1]) res = [s0 - a[0][0]] up, down = res[0], 0 for i in range(1, n): up -= a[0][i] down += a[1][i - 1] res.append(max(up, down)) print(min(res))
D. Say No to Palindromes
- 最终的串,对于其所有的子串,都是相同的一个abc的排列
- 那么考虑枚举哪种abc的排列最合适即可
- 考虑前缀和预处理
sum[3][3][N]
表示 [何种字符][在每一节的位置][长度],也就是说,sum[i][j][k]
表示的是,在长度1-k里,在每一节的第j个位置里,有多少个字符i
#include <bits/stdc++.h> #define sc(x) scanf("%lld", &(x)) #define pr(x) printf("%lld\n", (x)) #define rep(i, l, r) for (int i = l; i <= r; ++i) using namespace std; typedef long long ll; const int N = 2e5 + 7; const int mod = 1e9 + 7; char s[N]; int sum[3][3][N]; signed main() { int n, m; scanf("%d%d", &n, &m); scanf("%s", s + 1); rep(i, 1, n) { rep(j, 0, 2) rep(k, 0, 2) sum[j][k][i] = sum[j][k][i - 1]; ++sum[s[i] - 'a'][i % 3][i]; } int l, r; while (m--) { scanf("%d%d", &l, &r); int p[] = {0, 1, 2}; int ans = INT_MAX; do { int t = 0; for (int i = 0; i < 3 && i <= r - l; ++i) { int *su = sum[p[i]][(l + i) % 3]; t += 1 + (r - l - i) / 3 - (su[r] - su[l - 1]); } ans = min(ans, t); } while (next_permutation(p, p + 3)); printf("%d\n", ans); } return 0; }
E. Boring Segments
#include <bits/stdc++.h> #define sc(x) scanf("%d", &(x)) #define pr(x) printf("%d\n", (x)) #define rep(i, l, r) for (int i = l; i <= r; ++i) //线段树维护区间最小值 区间加 using namespace std; typedef int ll; const int N = 1e6 + 7; const ll mod = 1e9 + 7; ll a[N], tree[N << 2], lazy[N << 2], n; #define ls (p << 1) #define rs (p << 1 | 1) #define mid (l + r >> 1) void bulid(ll p = 1, int l = 1, int r = n) { lazy[p] = 0; if (l == r) { tree[p] = a[l]; return; } bulid(ls, l, mid); bulid(rs, mid + 1, r); tree[p] = min(tree[ls], tree[rs]); } inline void PushDown(int p) { if (lazy[p]) { lazy[ls] += lazy[p]; lazy[rs] += lazy[p]; tree[ls] += lazy[p]; tree[rs] += lazy[p]; lazy[p] = 0; } } void add(int x, int y, ll val = 1, int p = 1, int l = 1, int r = n) { if (x <= l && r <= y) { //当前区间可被所求区间覆盖 lazy[p] += val; tree[p] += val; return; } PushDown(p); if (x <= mid) add(x, y, val, ls, l, mid); if (y > mid) add(x, y, val, rs, mid + 1, r); tree[p] = min(tree[ls], tree[rs]); } ll query(int x = 1, int y = n, int p = 1, int l = 1, int r = n) { if (x <= l && r <= y) return tree[p]; if (lazy[p]) PushDown(p); if (y <= mid) return query(x, y, ls, l, mid); if (x > mid) return query(x, y, rs, mid + 1, r); return min(query(x, y, ls, l, mid), query(x, y, rs, mid + 1, r)); } struct node { int l, r, w; bool operator<(const node &o) const { return w < o.w; } }; struct cmp { bool operator()(const int &x, const int &y) const { return x > y; } }; int main() { int sz, m; sc(sz), sc(m); n = m - 1; vector<node> s(sz); for (node &x : s) { scanf("%d%d%d", &x.l, &x.r, &x.w); --x.r; } sort(s.begin(), s.end()); int d = INT_MAX; map<int, int> mn; map<int, int, cmp> mx; for (int L = 0, R = 0; R < sz; ++R) { add(s[R].l, s[R].r); ++mn[s[R].w], ++mx[s[R].w]; while (tree[1] > 0 && L <= R) { d = min((*mx.begin()).first - (*mn.begin()).first, d); add(s[L].l, s[L].r, -1); --mn[s[L].w], --mx[s[L].w]; if (!mn[s[L].w]) mn.erase(s[L].w); if (!mx[s[L].w]) mx.erase(s[L].w); ++L; } } pr(d); return 0; }
不用维护最值,因为已经排序
#include <bits/stdc++.h> #define sc(x) scanf("%d", &(x)) #define pr(x) printf("%d\n", (x)) #define rep(i, l, r) for (int i = l; i <= r; ++i) //线段树维护区间最小值 区间加 using namespace std; typedef int ll; const int N = 1e6 + 7; const ll mod = 1e9 + 7; ll a[N], tree[N << 2], lazy[N << 2], n; #define ls (p << 1) #define rs (p << 1 | 1) #define mid (l + r >> 1) void bulid(ll p = 1, int l = 1, int r = n) { lazy[p] = 0; if (l == r) { tree[p] = a[l]; return; } bulid(ls, l, mid); bulid(rs, mid + 1, r); tree[p] = min(tree[ls], tree[rs]); } inline void PushDown(int p) { if (lazy[p]) { lazy[ls] += lazy[p]; lazy[rs] += lazy[p]; tree[ls] += lazy[p]; tree[rs] += lazy[p]; lazy[p] = 0; } } void add(int x, int y, ll val = 1, int p = 1, int l = 1, int r = n) { if (x <= l && r <= y) { //当前区间可被所求区间覆盖 lazy[p] += val; tree[p] += val; return; } PushDown(p); if (x <= mid) add(x, y, val, ls, l, mid); if (y > mid) add(x, y, val, rs, mid + 1, r); tree[p] = min(tree[ls], tree[rs]); } ll query(int x = 1, int y = n, int p = 1, int l = 1, int r = n) { if (x <= l && r <= y) return tree[p]; if (lazy[p]) PushDown(p); if (y <= mid) return query(x, y, ls, l, mid); if (x > mid) return query(x, y, rs, mid + 1, r); return min(query(x, y, ls, l, mid), query(x, y, rs, mid + 1, r)); } struct node { int l, r, w; bool operator<(const node &o) const { return w < o.w; } }; struct cmp { bool operator()(const int &x, const int &y) const { return x > y; } }; int main() { int sz, m; sc(sz), sc(m); n = m - 1; vector<node> s(sz); for (node &x : s) { scanf("%d%d%d", &x.l, &x.r, &x.w); --x.r; } sort(s.begin(), s.end()); int d = INT_MAX; for (int L = 0, R = 0; R < sz; ++R) { add(s[R].l, s[R].r); while (tree[1] > 0 && L <= R) { d = min(s[R].w-s[L].w, d); add(s[L].l, s[L].r, -1); ++L; } } pr(d); return 0; }