#include <bits/stdc++.h>
using namespace std;
struct point{
double x,y;
point(double A,double B){
x=A,y=B;
}
point() = default;
};
struct line{
point point_A,point_B;
line(point A,point B){
point_A = A,point_B = B;
}
line() = default;
};
struct Circle{
point O;
int r;
Circle(point A,int B){
O=A,r=B;
}
Circle() = default;
};
double getDistance(const Circle& circle, const line& l) {
// 请在这里实现你的代码
//本题考察勾股定理结合点到直线距离,思维难度初中水平,难点依旧在如何访问和使用结构体中的数据
//先判断特例,即直线垂直于x轴的情况
if(l.point_A.x==l.point_B.x)
{
double dis=fabs(circle.O.x-l.point_A.x);
double ret=fabs(sqrt(circle.r*circle.r-dis*dis))*2;
return ret;
}
//再判断另一个特例,即A、B重合,此时弦长为0
if(l.point_A.x==l.point_B.x&&l.point_A.y==l.point_B.y)
return 0.0;
//一般情况,套用点到直线距离公式,配合勾股定理求解即可,点到直线距离的讲解在我其他题解有详细解析
double k=(l.point_A.y-l.point_B.y)/(l.point_A.x-l.point_B.x);
double deno=sqrt(fabs(1+k*k));
double dist=fabs(k*circle.O.x-circle.O.y-k*l.point_A.x+l.point_A.y)/deno;
double ret=fabs(sqrt(circle.r*circle.r-dist*dist))*2;
return ret;
}
int main() {
double ox, oy, r;
double x1, y1, x2, y2;
cin >> ox >> oy >> r;
cin >> x1 >> y1 >> x2 >> y2;
point center(ox, oy);
Circle circle(center, (int)r);
point p1(x1, y1);
point p2(x2, y2);
line l(p1, p2);
double result = getDistance(circle, l);
cout << fixed << setprecision(6) << result << endl;
return 0;
}