Quadratic Form
题意
,
为
的正定二次型,
为
的列向量
求满足求,
的最大的值
题解
带有不等式约束条件解极值问题, 使用拉格朗日乘子法
设拉格朗日函数
由KKT条件有
, 若
则
, 因此令
由, 得
则
又
最终有
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAX = 2e2 + 10;
const ll mod = 998244353;
ll qpow(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
bool Gauss(ll a[][MAX << 1], int n) {//Gauss求逆
for (int i = 0, r; i < n; i++) {
r = i;
for (int j = i + 1; j < n; j++)
if (a[j][i] > a[r][i]) r = j;
if (r != i) swap(a[i], a[r]);
if (!a[i][i]) return false;//无解
ll inv = qpow(a[i][i], mod - 2);
for (int k = 0; k < n; k++) {
if (k == i) continue;
ll t = a[k][i] * inv % mod;
for (int j = i; j < (n << 1); j++)
a[k][j] = (a[k][j] - t * a[i][j] % mod + mod) % mod;
}
for (int j = 0; j < (n << 1); j++) a[i][j] = a[i][j] * inv % mod;
}
return true;
}
int n;
ll a[MAX][MAX << 1], b[MAX];
int main() {
while (~scanf("%d", &n)) {
memset(a, 0, sizeof(a));
for (int i = 0; i < n; i++) {
a[i][i + n] = 1;
for (int j = 0; j < n; j++)
scanf("%lld", &a[i][j]);
}
Gauss(a, n);
for (int i = 0; i < n; i++) scanf("%lld", &b[i]);
ll ans = 0;
//calc b^T A b
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
ans = (ans + a[i][j + n] * b[i] % mod * b[j] % mod) % mod;
printf("%lld\n", (ans + mod) % mod);
}
return 0;
} 
京公网安备 11010502036488号