做法
这题做法还是比较明显的。既然直接计算答案麻烦,可以把题目转化为所有方案数减去比强而不比强的方案数,说白了就是个三维偏序模板题。
CDQ分治
用来求三维偏序,简单来说就是在二维为偏序的基础上加上对时间这一维的分治,类似于整体二分。
CODE
#include <algorithm> #include <cctype> #include <cmath> #include <complex> #include <cstdio> #include <cstring> #include <deque> #include <functional> #include <list> #include <map> #include <iomanip> #include <iostream> #include <queue> #include <set> #include <stack> #include <string> #include <vector> using namespace std; #define ll long long #define I inline #define ri register int #define lowbit(x) x & -x #define For(i , x , y) for(ri i = x ; i <= y ; ++ i) #define Next(i , x) for(ri i = head[x] ; i ; i = e[i].nxt) I int read() { int s = 0 , w = 1; char ch = getchar(); while(ch < 48 || ch > 57) {if(ch == '-') w = -1; ch = getchar();} while(ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48) , ch = getchar(); return s * w; } const int N = 1e6 + 5; struct Node { int a , b , c, ans; } a[N]; I bool cmp_abc(Node A , Node B) { if(A.a != B.a) return A.a < B.a; if(A.b != B.b) return A.b < B.b; return A.c < B.c; } I bool cmp_b(Node A , Node B) { return A.b < B.b; } I bool operator != (const Node &A , const Node &B) { return (A.a != B.a) || (A.b != B.b) || (A.c != B.c) ; } int n , k , cnt[N] , c[N] ; ll Ans; I void modify(int x , int w) { while(x <= n) c[x] += w , x += lowbit(x); } I int query(int i) { int res = 0; for( ; i ; i -= lowbit(i)) res += c[i]; return res; } void solve(int l , int r) { if(l == r) return ; int mid = (l + r) >> 1; solve(l , mid) ; solve(mid + 1 , r); sort(a + l , a + mid + 1 , cmp_b); sort(a + mid + 1 , a + r + 1 , cmp_b); int j = l ; For(i , mid + 1 , r) { while(j <= mid && a[j].b <= a[i].b) { modify(a[j].c , 1); ++ j; } a[i].ans += query(a[i].c); } while(-- j >= l) modify(a[j].c , - 1); } signed main() { freopen("in.cpp" , "r" , stdin); freopen("out.cpp" , "w" , stdout); n = read() ; For(i , 1 , n) a[i].a = read() , a[i].b = read() , a[i].c = read(); sort(a + 1 , a + n + 1 , cmp_abc); for(int i = n , j = n ; i >= 1 ; -- i) { while(a[j] != a[i]) -- j ; a[i].ans += j - i; } solve(1 , n) ; For(i , 1 , n) Ans += a[i].ans ; cout << n * 1ll * (n - 1) / 2 - Ans << endl; return 0; }