转载于 : http://blog.csdn.net/rickliuxiao/article/details/6259322
算法1:
- ///----------alg 1------------
- struct Point
- {
- double x, y;
- };
- bool between(double a, double X0, double X1)
- {
- double temp1= a-X0;
- double temp2= a-X1;
- if ( ( temp1<1e-8 && temp2>-1e-8 ) || ( temp2<1e-6 && temp1>-1e-8 ) )
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- // 判断两条直线段是否有交点,有则计算交点的坐标
- // p1,p2是直线一的端点坐标
- // p3,p4是直线二的端点坐标
- bool detectIntersect(Point p1, Point p2, Point p3, Point p4)
- {
- double line_x,line_y; //交点
- if ( (fabs(p1.x-p2.x)<1e-6) && (fabs(p3.x-p4.x)<1e-6) )
- {
- return false;
- }
- else if ( (fabs(p1.x-p2.x)<1e-6) ) //如果直线段p1p2垂直与y轴
- {
- if (between(p1.x,p3.x,p4.x))
- {
- double k = (p4.y-p3.y)/(p4.x-p3.x);
- line_x = p1.x;
- line_y = k*(line_x-p3.x)+p3.y;
- if (between(line_y,p1.y,p2.y))
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- else
- {
- return false;
- }
- }
- else if ( (fabs(p3.x-p4.x)<1e-6) ) //如果直线段p3p4垂直与y轴
- {
- if (between(p3.x,p1.x,p2.x))
- {
- double k = (p2.y-p1.y)/(p2.x-p1.x);
- line_x = p3.x;
- line_y = k*(line_x-p2.x)+p2.y;
- if (between(line_y,p3.y,p4.y))
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- else
- {
- return false;
- }
- }
- else
- {
- double k1 = (p2.y-p1.y)/(p2.x-p1.x);
- double k2 = (p4.y-p3.y)/(p4.x-p3.x);
- if (fabs(k1-k2)<1e-6)
- {
- return false;
- }
- else
- {
- line_x = ((p3.y - p1.y) - (k2*p3.x - k1*p1.x)) / (k1-k2);
- line_y = k1*(line_x-p1.x)+p1.y;
- }
- if (between(line_x,p1.x,p2.x)&&between(line_x,p3.x,p4.x))
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- }
- ///------------alg 1------------
算法2:
- ///------------alg 2------------
- //叉积
- double mult(Point a, Point b, Point c)
- {
- return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
- }
- //aa, bb为一条线段两端点 cc, dd为另一条线段的两端点 相交返回true, 不相交返回false
- bool intersect(Point aa, Point bb, Point cc, Point dd)
- {
- if ( max(aa.x, bb.x)<min(cc.x, dd.x) )
- {
- return false;
- }
- if ( max(aa.y, bb.y)<min(cc.y, dd.y) )
- {
- return false;
- }
- if ( max(cc.x, dd.x)<min(aa.x, bb.x) )
- {
- return false;
- }
- if ( max(cc.y, dd.y)<min(aa.y, bb.y) )
- {
- return false;
- }
- if ( mult(cc, bb, aa)*mult(bb, dd, aa)<0 )
- {
- return false;
- }
- if ( mult(aa, dd, cc)*mult(dd, bb, cc)<0 )
- {
- return false;
- }
- return true;
- }
- ///------------alg 2------------
算法3:http://dec3.jlu.edu.cn/webcourse/t000096/graphics/chapter5/01_1.
html
- ///------------alg 3------------
- double determinant(double v1, double v2, double v3, double v4) // 行列式
- {
- return (v1*v3-v2*v4);
- }
- bool intersect3(Point aa, Point bb, Point cc, Point dd)
- {
- double delta = determinant(bb.x-aa.x, cc.x-dd.x, bb.y-aa.y, cc.y-dd.y);
- if ( delta<=(1e-6) && delta>=-(1e-6) ) // delta=0,表示两线段重合或平行
- {
- return false;
- }
- double namenda = determinant(cc.x-aa.x, cc.x-dd.x, cc.y-aa.y, cc.y-dd.y) / delta;
- if ( namenda>1 || namenda<0 )
- {
- return false;
- }
- double miu = determinant(bb.x-aa.x, cc.x-aa.x, bb.y-aa.y, cc.y-aa.y) / delta;
- if ( miu>1 || miu<0 )
- {
- return false;
- }
- return true;
- }
- ///------------alg 3------------
main函数测试:
- int main()
- {
- Point p1, p2, p3, p4;
- p1.x = 1;
- p1.y = 4;
- p2.x = 3;
- p2.y = 0;
- p3.x = 0;
- p3.y = 1;
- p4.x = 4;
- p4.y = 3;
- int i=0, j=0;
- bool flag = false;
- flag = intersect3(p1, p2, p3, p4);
- // alg 2
- time_t seconds1 = time (NULL);
- for ( ; i!=20000; ++i )
- {
- for ( j=0; j!=60000; ++j )
- {
- flag = detectIntersect(p1, p2, p3, p4);
- }
- }
- time_t seconds2 = time (NULL);
- cout << "Time used in alg 1:" << seconds2-seconds1 << " seconds." << endl;
- // alg 2
- time_t seconds3 = time (NULL);
- i=0;
- j=0;
- for ( ; i!=20000; ++i )
- {
- for ( j=0; j!=60000; ++j )
- {
- flag = intersect(p1, p2, p3, p4);
- }
- }
- time_t seconds4 = time (NULL);
- cout << "Time used in alg 2:" << seconds4-seconds3 << " seconds." << endl;
- // alg 3
- time_t seconds5 = time (NULL);
- i=0;
- j=0;
- for ( ; i!=20000; ++i )
- {
- for ( j=0; j!=60000; ++j )
- {
- flag = intersect3(p1, p2, p3, p4);
- }
- }
- time_t seconds6 = time (NULL);
- cout << "Time used in alg 3:" << seconds6-seconds5 << " seconds." << endl;
- return 0;
- }
VS2008编译器环境下测试结果:
Debug模式下:
alg 1: 315 seconds;
alg 2: 832 seconds;
alg 3: 195 seconds;
Release模式下:
alg 1: 157 seconds;
alg 2: 169 seconds;
alg 3: 122 seconds;
结论: 使用算法3,时间复杂度最低。