思路
我们知道要让这个序列尽量长,那连续数字的商要尽量小,也就是说我们用质因数作为商的话,那么这个序列就最长,所以我们求一次质因数分解就可以求出
那么怎么求方案数呢?
假设我们已经知道了,质因数对应的数量的话,假设一共个质因数,那么方案数就是
展开就得到下面的式子
代码
/**
* author: andif
* created: 30.07.2023 13:42:23
**/
#include<bits/stdc++.h>
using namespace std;
#define de(x) cerr << #x << " = " << x << endl
#define dd(x) cerr << #x << " = " << x << " "
#define rep(i, a, b) for(int i = a; i < b; ++i)
#define per(i, a, b) for(int i = a; i > b; --i)
#define mt(a, b) memset(a, b, sizeof(a))
#define sz(a) (int)a.size()
#define fi first
#define se second
#define qc ios_base::sync_with_stdio(0);cin.tie(0)
#define eb emplace_back
#define all(a) a.begin(), a.end()
using ll = long long;
using db = double;
using pii = pair<int, int>;
using pdd = pair<db, db>;
using pll = pair<ll, ll>;
using vi = vector<int>;
const db eps = 1e-9;
int main() {
int t; cin >> t;
while(t--) {
int n; cin >> n;
vi p, e;
for (int i = 2; i * i <= n; ++i) {
if (n % i == 0) {
p.eb(i);
int c = 0;
while(n % i == 0) {
c++;
n /= i;
}
e.eb(c);
}
}
if (n != 1) {
p.eb(n);
e.eb(1);
}
auto f = [&] (int x) {
ll ret = 1;
rep(i, 1, x + 1) {
ret *= i;
}
return ret;
};
int m = 0;
rep(i, 0, sz(p)) m += e[i];
ll fenzi = f(m);
rep(i, 0, sz(p)) fenzi /= f(e[i]);
cout << m << " " << fenzi << '\n';
}
return 0;
}