题意
给定一棵n个点的树,问其中有多少条长度为偶数的路径。路径的长度为经过的边的条数。x到y与y到x被视为同一条路径。路径的起点与终点不能相同。
分析
这就是一道水题。。。
考虑一条路径 ,长度为
因为 为偶数,于是只用看
为偶数的对数即可。
统计深度为奇数的点数 ,为偶数的点数为
答案为
代码如下
#include <bits/stdc++.h>
#include<ext/pb_ds/hash_policy.hpp>
#include<ext/pb_ds/assoc_container.hpp>
#define N 100005
using namespace __gnu_pbds;
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
LL z = 1;
int read(){
int x, f = 1;
char ch;
while(ch = getchar(), ch < '0' || ch > '9') if(ch == '-') f = -1;
x = ch - '0';
while(ch = getchar(), ch >= '0' && ch <= '9') x = x * 10 + ch - 48;
return x * f;
}
int ksm(int a, int b, int p){
int s = 1;
while(b){
if(b & 1) s = z * s * a % p;
a = z * a * a % p;
b >>= 1;
}
return s;
}
struct node{
int a, b, n;
}d[N * 2];
int h[N], cnt, fa[N], dep[N];
void cr(int a, int b){
d[++cnt].a = a; d[cnt].b = b; d[cnt].n = h[a]; h[a] = cnt;
}
void dfs(int a){
int i, b;
for(i = h[a]; i; i = d[i].n){
b = d[i].b;
if(b == fa[a]) continue;
fa[b] = a;
dep[b] = dep[a] + 1;
dfs(b);
}
}
int main(){
int i, j, n, m, a, b, t1 = 0, t2;
n = read();
for(i = 1; i < n; i++){
a = read(); b = read();
cr(a, b); cr(b, a);
}
dfs(1);
for(i = 1; i <= n; i++) t1 += (dep[i] & 1);
t2 = n - t1;
printf("%lld", z * t1 * (t1 - 1) / 2 + z * t2 * (t2 - 1) / 2);
return 0;
}

京公网安备 11010502036488号