A、小A买彩票
直接On^2跑出全部价格的组合方案数,在n张牌里面。
把3n到4n的方案数累加起来。
总方案数就是4^n去掉最大公约数在特判下就行了。
最坑在于0,不买就永远不亏……我枯了。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) typedef long long ll; typedef unsigned long long ull; typedef long double ld; #define fi first #define se second #define pb push_back #define pf push_front #define pob pop_back #define pof pop_front #define pii pair<int, int> #define pil pair<int, long long> #define pli pair<long long, int> #define pll pair<long long, long long> const ll MOD = 1e9 + 7; inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } inline void write(ll x) { if (!x) { putchar('0'); return; } char F[200]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } ll dp[35][150]; int main() { ll n = read(); if (n == 0) return puts("1/1"), 0; dp[1][1] = dp[1][2] = dp[1][3] = dp[1][4] = 1; for (int i = 2; i <= n; ++i) for (int j = 1; j <= 4 * n; ++j) for (int k = 1; k <= 4; ++k) if (j - k >= 0) dp[i][j] += dp[i - 1][j - k]; ll up = 0, down = qpow(4, n); for (int i = 3 * n; i <= 4 * n; ++i) up += dp[n][i]; ll tmp = gcd(up, down); up /= tmp, down /= tmp; if (!up) puts("0/1"); else if (up == down) puts("1/1"); else write(up), putchar('/'), write(down); return 0; }
B、「金」点石成金
dfs的裸题,不愧是被选上NC周练的题目
对于每个物品,存在题目给得两种操作,记得操作之后回溯,变负数了改成0。
也不需要减枝就可以A。直接跑就行了。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) typedef long long ll; typedef unsigned long long ull; typedef long double ld; #define fi first #define se second #define pb push_back #define pf push_front #define pob pop_back #define pof pop_front #define pii pair<int, int> #define pil pair<int, long long> #define pli pair<long long, int> #define pll pair<long long, long long> const ll MOD = 1e9 + 7; inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } inline void write(ll x) { if (!x) { putchar('0'); return; } char F[200]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 20; int a[N], b[N], c[N], d[N]; ll ans, sum1, sum2; int n; void dfs(int x) { if (x > n) { if (sum1 * sum2 > ans) ans = sum1 * sum2; return; } for (int i = 1; i <= 2; ++i) { ll temp1 = sum1; ll temp2 = sum2; if (i & 1) { sum1 += a[x]; sum2 -= b[x]; if (sum2 < 0) sum2 = 0; } else { sum2 += c[x]; sum1 -= d[x]; if (sum1 < 0) sum1 = 0; } dfs(x + 1); sum1 = temp1; sum2 = temp2; } } int main() { n = read(); for (int i = 1; i <= n; ++i) a[i] = read(), b[i] = read(), c[i] = read(), d[i] = read(); dfs(1); printf("%lld\n", ans); return 0; }
E、Board
对于每个要求解得点,你会发现在整个地图来看,是存在相关性的。
如果不是第一行或第一列,直接把该行该列的第一行第一列元素一加,之前第一列和第一行累加的会累计到[1,1]去
那么类比第一行或者第一列的,把地图反转一下,去求[n,n]也是同样的。可以体会一下,精髓就是整个地图存在相关性。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) typedef long long ll; typedef unsigned long long ull; typedef long double ld; #define fi first #define se second #define pb push_back #define pf push_front #define pob pop_back #define pof pop_front #define pii pair<int, int> #define pil pair<int, long long> #define pli pair<long long, int> #define pll pair<long long, long long> const ll MOD = 1e9 + 7; inline ll read() { ll s = 0, w = 1; char ch = getchar(); while (ch < 48 || ch > 57) { if (ch == '-') w = -1; ch = getchar(); } while (ch >= 48 && ch <= 57) s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar(); return s * w; } inline void write(ll x) { if (!x) { putchar('0'); return; } char F[200]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 1e3 + 7; int mp[N][N]; int x, y; int main() { int n = read(); for (int i = 1; i <= n; ++i) for (int j = 1; j <= n; ++j) { mp[i][j] = read(); if (mp[i][j] == -1) { x = i, y = j; continue; } } int ans = 0; if (x == 1 || y == 1) ans = mp[x][n] + mp[n][y] - mp[n][n]; else ans = mp[1][y] + mp[x][1] - mp[1][1]; write(ans), putchar(10); return 0; }