题意
n个点m条边的有向图,给出边的单位流量费用,q次询问,每次询问有有u,v两个整数,表示所有边的容量为u/v,对于每次询问,输出从1到n流量为1时的最小费用,流量达不到1时,输出“NaN”.
题解
每条边的容量是相同的,如果边的容量为1的时候流量为maxflow,那么边的容量为u/v时,流量就是u* maxflow/v。
所以,只要将所有边按容量为1跑最小费用最大流,将每次增广的流量和费用存下来,按费用从小到大排序,对于每次询问,假定边容量为u,那么最大流就是u*maxflow,按费用从小到大加到将流量凑到v,得到的费用再除以v,就是流量为1时的费用了。
代码
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 5e3 + 7;
const int M = 1e4 + 7;
const int maxn = 5e3 + 7;
typedef long long ll;
int maxflow, mincost;
struct Edge {
int from, to, cap, flow, cost;
Edge(int u, int v, int ca, int f, int co):from(u), to(v), cap(ca), flow(f), cost(co){};
};
struct MCMF
{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[N];
int inq[N], d[N], p[N], a[N];//是否在队列 距离 上一条弧 可改进量
void init(int n) {
this->n = n;
for (int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void add(int from, int to, int cap, int cost) {
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
vector<pair<int, int> > v;
bool SPFA(int s, int t, int &flow, int &cost) {
for (int i = 0; i < N; i++) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> que;
que.push(s);
while (!que.empty()) {
int u = que.front();
que.pop();
inq[u]--;
for (int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) {
inq[e.to]++;
que.push(e.to);
}
}
}
}
if(d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
v.push_back(make_pair(d[t], a[t]));
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
int MinMaxflow(int s, int t) {
int flow = 0, cost = 0;
while (SPFA(s, t, flow, cost));
maxflow = flow; mincost = cost;
return cost;
}
};
int main()
{
int n, m, s, t;
while (scanf("%d%d", &n, &m) != EOF) {
MCMF solve;
s = 1, t = n;
for (int i = 1, a, b, c; i <= m; i++) {
scanf("%d%d%d", &a, &b, &c);
solve.add(a, b, 1, c);
}
solve.MinMaxflow(s, t);
sort(solve.v.begin(), solve.v.end());
int q; ll u, v; scanf("%d", &q);
while (q--) {
scanf("%lld%lld", &u, &v);
if(u * maxflow < v) printf("NaN\n");
else {
ll sumc = 0, sumf = 0;
for (int i = 0; i < solve.v.size(); i++) {
int flow = solve.v[i].second, cost = solve.v[i].first;
if(sumf + u <= v) {
sumf += u;
sumc += u * cost;
}
else if(sumf < v) {
sumc += (v - sumf) * cost;
sumf = v;
}
else break;
}
if(sumf != v) printf("NaN\n");
else {
ll gcd = __gcd(sumc, v);
printf("%lld/%lld\n", sumc/gcd, v/gcd);
}
}
}
}
}

京公网安备 11010502036488号