题意
n个点m条边的有向图,给出边的单位流量费用,q次询问,每次询问有有u,v两个整数,表示所有边的容量为u/v,对于每次询问,输出从1到n流量为1时的最小费用,流量达不到1时,输出“NaN”.
题解
每条边的容量是相同的,如果边的容量为1的时候流量为maxflow,那么边的容量为u/v时,流量就是u* maxflow/v。
所以,只要将所有边按容量为1跑最小费用最大流,将每次增广的流量和费用存下来,按费用从小到大排序,对于每次询问,假定边容量为u,那么最大流就是u*maxflow,按费用从小到大加到将流量凑到v,得到的费用再除以v,就是流量为1时的费用了。
代码
#include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace std; const int N = 5e3 + 7; const int M = 1e4 + 7; const int maxn = 5e3 + 7; typedef long long ll; int maxflow, mincost; struct Edge { int from, to, cap, flow, cost; Edge(int u, int v, int ca, int f, int co):from(u), to(v), cap(ca), flow(f), cost(co){}; }; struct MCMF { int n, m, s, t; vector<Edge> edges; vector<int> G[N]; int inq[N], d[N], p[N], a[N];//是否在队列 距离 上一条弧 可改进量 void init(int n) { this->n = n; for (int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void add(int from, int to, int cap, int cost) { edges.push_back(Edge(from, to, cap, 0, cost)); edges.push_back(Edge(to, from, 0, 0, -cost)); int m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } vector<pair<int, int> > v; bool SPFA(int s, int t, int &flow, int &cost) { for (int i = 0; i < N; i++) d[i] = INF; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> que; que.push(s); while (!que.empty()) { int u = que.front(); que.pop(); inq[u]--; for (int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]) { inq[e.to]++; que.push(e.to); } } } } if(d[t] == INF) return false; flow += a[t]; cost += d[t] * a[t]; v.push_back(make_pair(d[t], a[t])); int u = t; while (u != s) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } int MinMaxflow(int s, int t) { int flow = 0, cost = 0; while (SPFA(s, t, flow, cost)); maxflow = flow; mincost = cost; return cost; } }; int main() { int n, m, s, t; while (scanf("%d%d", &n, &m) != EOF) { MCMF solve; s = 1, t = n; for (int i = 1, a, b, c; i <= m; i++) { scanf("%d%d%d", &a, &b, &c); solve.add(a, b, 1, c); } solve.MinMaxflow(s, t); sort(solve.v.begin(), solve.v.end()); int q; ll u, v; scanf("%d", &q); while (q--) { scanf("%lld%lld", &u, &v); if(u * maxflow < v) printf("NaN\n"); else { ll sumc = 0, sumf = 0; for (int i = 0; i < solve.v.size(); i++) { int flow = solve.v[i].second, cost = solve.v[i].first; if(sumf + u <= v) { sumf += u; sumc += u * cost; } else if(sumf < v) { sumc += (v - sumf) * cost; sumf = v; } else break; } if(sumf != v) printf("NaN\n"); else { ll gcd = __gcd(sumc, v); printf("%lld/%lld\n", sumc/gcd, v/gcd); } } } } }