矩阵的相关性质再回顾
对于一个矩阵
- 满足结合律
- 满足乘法对于加法的分配率
- 但是不满***换律!
对于特殊一点的矩阵来说:
把最左边还有最右面的看成一个数组。。
矩阵加速大法:
因为矩阵满足结合律,所以可以使用快速幂来进行计算。
规律总结:
矩阵加速设计到两个东西:
- 状态矩阵
- 转移矩阵
- 可以抽象出一个一维向量,在每一次递推就变化一次;
- 状态转移方程不发生变化;
- 状态转移过程中,一定是线性的(加减,乘以系数)
- 注意:状态矩阵需要尽可能短,转移次数可以比较大。
时间复杂度是 N 3 l o g N N^3logN N3logN.
ACWing205. 斐波那契
要注意取模
代码
#include <bits/stdc++.h>
using namespace std;
const int len = 2;
const int mod = 10000;
void mulself(int a[2][2])
{
int c[2][2];
memset(c, 0, sizeof(c));
for(int i = 0; i < len; i++ )
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[i][j] = (c[i][j]+(long long)a[i][k] * a[k][j])%mod;
memcpy(a, c, sizeof(c));
}
void mul(int a[2][2], int f[2])
{
int c[2];
memset(c, 0, sizeof(c));
for(int j = 0; j < len; j++)
for(int k = 0; k < len; k++)
c[j] = (c[j] + (long long)f[k] * a[k][j])%mod;
memcpy(f, c, sizeof(c));
}
void solve(int n)
{
int a[2][2] = {
{
0, 1}, {
1, 1}};
int f[2] = {
0, 1};
for(; n; n >>= 1 )
{
if(n&1) mul(a, f);
mulself(a);
}
printf("%d\n", f[0]);
}
int main()
{
int n;
while((scanf("%d", &n)||1) && n != -1) solve(n);
return 0;
}
ACWing206. 石头游戏
解题思路:
感受:
太恶心了,一百多行代码,debug了一下午
代码
//在这个程序中所有的数组全部从1开始计数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,t,act;
char op[20][20];//表示操作
ll oplen[20];
ll mp[70];//表示单元格映射的操作数字
ll matrix[70][70][70];
ll p;//p表示状态矩阵的从 0 到 p;
inline ll num(ll x, ll y)
{
if(x==0 && y==0) return 0;
return (x-1)*m + y;
}
void read_op_and_mp()
{
char buf[12];
for(int i = 1; i <= n; i++)
{
scanf("%s", buf+1);
for(int j = 1; j <= m; j++)
{
mp[num(i, j)] = buf[j]-'0'+1;
}
}
for(int i = 1; i <= act; i++)
{
scanf("%s", op[i]+1);
oplen[i] = strlen(op[i]+1);
}
}
void mulself(ll a[70][70])//
{
ll c[70][70];
memset(c, 0, sizeof(c));
for(int i = 0; i<= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
c[i][j] += a[i][k] * a[k][j];
memcpy(a, c, sizeof(c));
}
void mul(ll f[], ll a[70][70])
{
ll c[70];
memset(c, 0, sizeof(c));
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
c[j] += f[k] * a[k][j];
}
memcpy(f, c, sizeof(c));//sizeof不能是f因为f是指针。
}
void make_matrix()
{
ll tmp[70][70];
for(int i = 0; i <= p; i++) matrix[0][i][i] = 1;//设置为单位矩阵
for(int tt = 1; tt <= 60; tt++)
{
memset(tmp, 0, sizeof(tmp));
tmp[0][0] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
char ch = op[mp[num(i, j)]][(tt-1)%oplen[mp[num(i, j)]]+1];
if('0' <= ch && ch <= '9')
{
tmp[num(0, 0)][num(i, j)] = ch-'0';
tmp[num(i, j)][num(i, j)] = 1;
}
else if(ch=='N')
{
if(i > 1) tmp[num(i, j)][num(i-1, j)] = 1;
}
else if(ch=='W')
{
if(j > 1) tmp[num(i, j)][num(i, j-1)] = 1;
}
else if(ch=='S')
{
if(i < n) tmp[num(i, j)][num(i+1, j)] = 1;
}
else if(ch=='E')
{
if(j < m) tmp[num(i, j)][num(i, j+1)] = 1;
}
}
for(int i = 0; i <= p; i++)
for(int j = 0; j <= p; j++)
for(int k = 0; k <= p; k++)
{
matrix[tt][i][j] += matrix[tt-1][i][k] * tmp[k][j];
}
}
}
ll solve()
{
ll ret = 0;
ll f[70] = {
0};
f[0] = 1;
ll a[70][70];
make_matrix();
memcpy(a, matrix[60], sizeof(a));
ll xx = t / 60;
for(; xx; xx >>= 1)
{
if(xx&1) mul(f, a);
mulself(a);
}
mul(f, matrix[t%60]);
for(int i = 1; i <= p; i++) ret = max(ret, f[i]);
return ret;
}
int main()
{
cin >> n >> m >> t >> act;
read_op_and_mp();
p = m * n;
ll ans = solve();
cout << ans << endl;
return 0;
}