u 1 , u 2 , u 3 u_1,u_2,u_3 u1,u2,u3分别是不同坐标系的三个坐标, h 1 , h 2 , h 3 h_1,h_2,h_3 h1,h2,h3就是拉梅系数

①直角坐标:

u 1 = x <mtext>   </mtext> u 2 = y <mtext>   </mtext> u 3 = z u_1=x\ u_2=y\ u_3=z u1=x u2=y u3=z
h 1 = h 2 = h 3 = 1 h_1=h_2=h_3=1 h1=h2=h3=1

②圆柱坐标:

u 1 = ρ , u 2 = ϕ , u 3 = z u_1=\rho,u_2=\phi,u_3=z u1=ρ,u2=ϕ,u3=z
h 1 = 1 , h 2 = ρ , h 3 = 1 h_1=1,h_2=\rho,h_3=1 h1=1,h2=ρ,h3=1

③球坐标:( ϕ 2 π \phi是2\pi那个角 ϕ2π

u 1 = r , u 2 = θ , u 3 = ϕ u_1=r,u_2=\theta,u_3=\phi u1=r,u2=θ,u3=ϕ
h 1 = 1 , h 2 = r , h 3 = r s i n θ h_1=1,h_2=r,h_3=r sin\theta h1=1,h2=r,h3=rsinθ

然后就有一个统一的矢量场公式:



雅克比行列式

以前只在线性代数中听过这个,但是高数中也有一个

比如 d x d y = r d r d θ dxdy=rdrd\theta dxdy=rdrdθ怎么来的哇?
以前只能用画图来解释,没想到竟然有变换的公式,一直都想有,以为没有,结果真的有。。。
{ <mstyle displaystyle="false" scriptlevel="0"> x = x ( u , v ) </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y = y ( u , v ) </mstyle> \left\{\begin{matrix} x=x(u,v)\\ \\ y=y(u,v) \end{matrix}\right. x=x(u,v)y=y(u,v)

J = <mstyle displaystyle="false" scriptlevel="0"> x u </mstyle> <mstyle displaystyle="false" scriptlevel="0"> x v </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y u </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y v </mstyle> J=\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \\\frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} \end{vmatrix} J=uxuyvxvy

d x d y = J d u d v dxdy=|J|\cdot dudv dxdy=Jdudv

有了这个公式就知道极坐标这个怎么来的了
{ <mstyle displaystyle="false" scriptlevel="0"> x = r c o s θ </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y = r s i n θ </mstyle> \left\{\begin{matrix} x=rcos\theta\\ \\ y=rsin\theta \end{matrix}\right. x=rcosθy=rsinθ

J = <mstyle displaystyle="false" scriptlevel="0"> x r </mstyle> <mstyle displaystyle="false" scriptlevel="0"> x θ </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y r </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y θ </mstyle> = <mstyle displaystyle="false" scriptlevel="0"> c o s θ </mstyle> <mstyle displaystyle="false" scriptlevel="0"> r s i n θ </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> s i n θ </mstyle> <mstyle displaystyle="false" scriptlevel="0"> r c o s θ </mstyle> = r ( c o s 2 θ + s i n 2 θ ) = r J=\begin{vmatrix} \frac{\partial x}{\partial r}&\frac{\partial x}{\partial \theta}\\ \\\frac{\partial y}{\partial r} &\frac{\partial y}{\partial \theta} \end{vmatrix}=\begin{vmatrix} cos\theta&-rsin\theta \\ & \\ sin\theta&rcos\theta \end{vmatrix}=r(cos^2\theta+sin^2\theta)=r J=rxryθxθy=cosθsinθrsinθrcosθ=r(cos2θ+sin2θ)=r

d x d y = r d r d θ \therefore dxdy=r\cdot drd\theta dxdy=rdrdθ