F i b ( N ) <mtext>   </mtext> m o d <mtext>   </mtext> F i b ( K ) Fib(N)\ mod\ Fib(K) Fib(N) mod Fib(K)

Fib(N)表示斐波那契数列的第N项( F ( 0 ) = 0 , F ( 1 ) = 1 F(0) = 0, F(1) = 1 F(0)=0,F(1)=1),给出N和K,求 F i b ( N ) m o d F i b ( K ) Fib(N) mod Fib(K) Fib(N)modFib(K)。由于结果太大,输出 M o d <mtext>   </mtext> 1000000007 Mod\ 1000000007 Mod 1000000007 的结果。


<mstyle mathcolor="red"> </mstyle> \color{red}{正解部分}

首先要知道

F i = F k F i k + 1 + F k 1 F i k F_i = F_kF_{i-k+1}+F_{k-1}F_{i-k} Fi=FkFik+1+Fk1Fik,

m o d <mtext>   </mtext> F k mod\ F_k mod Fk 意义下继续化简 \downarrow

F i = F k 1 F i k = F k 1 ( F k F i 2 k + 1 + F k 1 F i k k ) = F k 1 2 F i 2 k <mtext>   </mtext>&NegativeThinSpace; = F k 1 i k F i % k F_i\\ = F_{k-1}F_{i-k}\\ = F_{k-1}(F_kF_{i-2k+1}+F_{k-1}F_{i-k-k})\\ = F_{k-1}^2F_{i-2k}\\ \ \dotsi \\ = F_{k-1}^{\lfloor \frac{i}{k} \rfloor}F_{i\%k} Fi=Fk1Fik=Fk1(FkFi2k+1+Fk1Fikk)=Fk12Fi2k =Fk1kiFi%k


再要知道

F k 1 2 + F k 1 F k F k 2 = ( 1 ) k F_{k-1}^2+F_{k-1}F_{k}-F_k^2 = (-1)^k Fk12+Fk1FkFk2=(1)k

: 证明: :

首先要知道 二阶行列式 的相关内容如下.

二阶行列式 : d e t ( <mstyle displaystyle="false" scriptlevel="0"> a <mtext>   </mtext> b </mstyle> <mstyle displaystyle="false" scriptlevel="0"> c <mtext>   </mtext> d </mstyle> ) = a d b c det \begin{pmatrix} a\ b \\ c\ d \end{pmatrix} =ad-bc det(a bc d)=adbc

再看斐波那契数列的转移矩阵如下,

[ <mstyle displaystyle="false" scriptlevel="0"> 1 <mtext>   </mtext> 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 1 <mtext>   </mtext> 0 </mstyle> ] k = [ <mstyle displaystyle="false" scriptlevel="0"> F k + 1 <mtext>      </mtext> F k </mstyle> <mstyle displaystyle="false" scriptlevel="0"> F k <mtext>       </mtext> F k 1 </mstyle> ] \begin{bmatrix} 1\ 1 \\ 1\ 0 \end{bmatrix}^k = \begin{bmatrix} F_{k+1}\ \ \ \ F_k \\ F_k\ \ \ \ \ F_{k-1} \end{bmatrix} [1 11 0]k=[Fk+1    FkFk     Fk1]

矩阵相等, 行列式也相等,

( 1 ) k = F k + 1 F k 1 F k 2 = F k 1 2 + F k 1 F k F k 2 \therefore (-1)^k \\ = F_{k+1}F_{k-1} - F_k^2\\ = F_{k-1}^2+F_{k-1}F_k-F_k^2 (1)k=Fk+1Fk1Fk2=Fk12+Fk1FkFk2

得证 .

所以在 m o d &ThinSpace;&ThinSpace; F k \mod F_k modFk 意义下, ( 1 ) k = F k 1 2 (-1)^k=F_{k-1}^2 (1)k=Fk12 .


再看原式: F i = F k 1 i k F i % k F_i = F_{k-1}^{\lfloor \frac{i}{k} \rfloor}F_{i\%k} Fi=Fk1kiFi%k

x = i k x= \lfloor \frac{i}{k} \rfloor x=ki, y = i % k y=i\%k y=i%k,

F i = F k 1 x F y = { <mstyle displaystyle="false" scriptlevel="0"> x &amp; 1 = = 0 , <mtext>     </mtext> ( 1 ) x 2 k F y </mstyle> <mstyle displaystyle="false" scriptlevel="0"> x &amp; 1 = = 1 , <mtext>     </mtext> ( 1 ) ( x 2 + 1 ) k F y k = ( 1 ) ( x 2 + 1 ) k + k y 1 F k y </mstyle> F_i = F_{k-1}^xF_{y}=\begin{cases} x\&amp;1 == 0, \ \ \ (-1)^{\frac{x}{2}k} F_y\\ x\&amp;1 == 1, \ \ \ (-1)^{(\frac{x}{2}+1)k} F_{y-k} = (-1)^{(\frac{x}{2}+1)k+k-y-1} F_{k-y} \end{cases} Fi=Fk1xFy={x&1==0,   (1)2xkFyx&1==1,   (1)(2x+1)kFyk=(1)(2x+1)k+ky1Fky


其中 F y k F_{y-k} Fyk 可能为负数, 这里又要引入

: F i = ( 1 ) i 1 F i 斐波那契的负系数项:F_{-i} = (-1)^{i-1}F_i :Fi=(1)i1Fi .

然后就可以 A C AC AC ! ! !

总结一下, 该题涉及的知识点有

  • F i = F k F i k + 1 + F k 1 F i k F_i = F_kF_{i-k+1}+F_{k-1}F_{i-k} Fi=FkFik+1+Fk1Fik
  • F k 1 2 + F k 1 F k F k 2 = ( 1 ) k F_{k-1}^2+F_{k-1}F_{k}-F_k^2 = (-1)^k Fk12+Fk1FkFk2=(1)k
  • F i = ( 1 ) i 1 F i F_{-i} = (-1)^{i-1}F_i Fi=(1)i1Fi

<mstyle mathcolor="red"> </mstyle> \color{red}{实现部分}

#include<bits/stdc++.h>
#define reg register
typedef long long ll;

const int mod = 1e9 + 7;

ll N;
ll K;

struct Matrix{ int C[4][4]; Matrix(){ memset(C, 0, sizeof C); } };

Matrix modify(const Matrix &a, const Matrix &b){
        Matrix s;
        for(reg int i = 1; i <= 2; i ++)
                for(reg int j = 1; j <= 2; j ++)
                        for(reg int k = 1; k <= 2; k ++){
                                int &t = s.C[i][j];
                                t = (1ll*t + (1ll*a.C[i][k]*b.C[k][j]%mod)) % mod;
                        }
        return s;
}

Matrix ma_Ksm(Matrix a, ll b){
        Matrix s;
        for(reg int i = 1; i <= 2; i ++) s.C[i][i] = 1;
        while(b){
                if(b & 1) s = modify(s, a);
                a = modify(a, a); b >>= 1;
        }
        return s;
}

ll get(ll k){
        Matrix res, I;
        res.C[1][1] = 1;
        I.C[1][1] = I.C[1][2] = I.C[2][1] = 1;
        I = ma_Ksm(I, k);
        res = modify(res, I);
        return res.C[1][2];
}

void Work(){
        scanf("%lld%lld", &N, &K);
        ll x = N/K, y = N%K;
        if(x & 1){
                x = (x+1)/2, y = K-y-1;
                x = (K & 1) * x;
                ll Ans = ((x+y&1)?-1:1) * get(y + 1);
                if(Ans < 0) Ans = (Ans + get(K) + mod) % mod;
                printf("%lld\n", Ans);
        }else{
                x >>= 1;
                if(!(K&1)) x = 0;
                ll Ans = ((x&1)?-1:1) * get(y);
                if(Ans < 0) Ans = (Ans + get(K) + mod) % mod;
                printf("%lld\n", Ans);
        }
}

int main(){ 
        freopen("fib.in", "r", stdin);
        freopen("fib.out", "w", stdout);
        int T; scanf("%d", &T);
        while(T --) Work();
        return 0;
}