NC13611
题意
一棵有n个结点的树,我们有k种不同颜色的染料给树染色。当且仅当对于所有相同颜色的点对(x,y),x到y的路径上的所有点的颜色都要与x和y相同时,染色方案是合法的。请统计方案数。
思路
把题目转化为给你一颗n结点的树,将其分成 i (1≤i≤k)个连通块涂上不同的颜色,此时发现染色方案的数量与这棵树的形状无关,仅与k和n有关,将其看为一个点集,每个点集可以涂一种颜色。
-
DP:f[i][j]=f[i−1][j]+f[i−1][j−1]∗(k−(j−1))
-
组合数学:分成 i个连通块可看做断 i−1条边,则可选边的方案数为C_{n-1}^{i-1},每一个块可以取的颜色有 Aki种,又可以将连通块分为 i (1≤i≤k)块不同颜色,最后总的方案数 ∑i=1min(n,k)Cn−1i−1Aki
DP
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const double eps = 1e-8;
const int NINF = 0xc0c0c0c0;
const int INF = 0x3f3f3f3f;
const ll mod = 1e9 + 7;
const ll maxn = 1e6 + 5;
const int N = 300 + 5;
ll n,k,f[N][N],res;
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>k;
f[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=k;j++){
f[i][j]=(f[i-1][j]%mod+f[i-1][j-1]*(k-(j-1))%mod)%mod;
}
}
for(int i=1;i<=k;i++){
res=(res+f[n][i])%mod;
}
cout<<res<<'\n';
return 0;
}
组合数学
下面的代码还可以用一些算法优化求组合数,这里未优化复杂度为 O(n2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const double eps = 1e-8;
const int NINF = 0xc0c0c0c0;
const int INF = 0x3f3f3f3f;
const ll mod = 1e9 + 7;
const ll maxn = 1e6 + 5;
const int N = 300 + 5;
ll n,k,res,p=mod;
ll qpow(ll a,ll b){
ll res=1;
for(;b>0;b>>=1,a=a*a%mod)
if(b&1) res=res*a%mod;
return res;
}
inline ll C(ll n,ll m){
if(n<m) return 0;//组合数n<m特判
if(m>n-m) m=n-m;//组合数性质
ll a=1,b=1;
for(int i=0;i<m;i++){
a=a*(n-i)%p;//组合数分子 a
b=b*(i+1)%p;//组合数分母 b
}
return a*qpow(b,p-2)%p;//费马小定理 a/b=a*b^(p-2)
}
inline ll A(ll n,ll m){
if(n<m) return 0;
ll a=1;
for(int i=n-m+1;i<=n;i++){
a=a*i%p;
}
return a;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>k;
for(int i=1;i<=min(n,k);i++){
res=(res+C(n-1,i-1)*A(k,i)%mod)%mod;
}
cout<<res<<'\n';
return 0;
}