首先上个二叉树~~~~~
前序遍历A-B-D-F-G-H-I-E-C
中序遍历F-D-H-G-I-B-E-A-C
后序遍历F-H-I-G-D-E-B-C-A
前序(根左右),中序(左根右),后序(左右根)
前序遍历:
从前序遍历中,我们确定了根结点为A,在从中序遍历中得出 F-D-H-G-I-B-E在根结点的左边,C在根结点的右边,那么我们就可以构建我们的二叉树的雏形。
那么剩下的前序遍历为B-D-F-G-H-I-E,中序遍历为F-D-H-G-I-B-E, B就是我们新的“根结点”,从中序遍历中得出F-D-H-G-I在B的左边,E在B的右边,继续构建
那么剩下的前序遍历为D-F-G-H-I,中序遍历为F-D-H-G-I,D就是我们新的“根结点”,从中序遍历中得出F在D的左边,H-G-I在D的右边,继续构建
那么剩下的前序遍历为G-H-I,中序遍历为H-G-I,G就是我们新的“根结点”,从中序遍历中得出H在G的左边,I在G的右边,继续构建
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
}
};

京公网安备 11010502036488号