下面2题 差不多 都是边差分
闇の連鎖
https://www.acwing.com/problem/content/354/
这个题 删一个树边 和 一个非树边 让树不连通
那样 删一个 经过边是 0 的树边 和 删 一个 经过边是 1 的树边 才能成功
前置 是 m0 * m 数量 后者 是唯一确定的
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
int n, m;
int head[maxn], cnt;
int nxt[maxn << 1], to[maxn << 1];
void ade(int a, int b) {
to[++ cnt] = b;
nxt[cnt] = head[a], head[a] = cnt;
}
int depth[maxn], fa[maxn][25];
void dfs_lca(int x, int pre) {
depth[x] = depth[pre] + 1;
fa[x][0] = pre;
for(int i = 1; (1 << i) <= depth[x]; i ++)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(int i = head[x]; i; i = nxt[i])
if(to[i] != pre) {
dfs_lca(to[i], x);
}
}
int LCA(int x, int y) {
if(depth[x] > depth[y]) swap(x, y);
for(int i = 24; ~i; -- i)
if(depth[x] <= depth[y] - (1 << i))
y = fa[y][i];
if(x == y) return x;
for(int i = 24; ~i; -- i)
if(fa[x][i] != fa[y][i])
x = fa[x][i], y =fa[y][i];
return fa[x][0];
}
int coun[maxn];
void dfs(int x, int pre) {
for(int i = head[x]; i; i = nxt[i]) {
int y = to[i];
if(y == pre) continue;
dfs(y, x);
coun[x] += coun[y];
}
}
signed main() {
scanf("%d %d", &n, &m);
for(int i = 1, a, b; i < n; i ++) {
scanf("%d %d", &a, &b);
ade(a, b), ade(b, a);
}
dfs_lca(1, 0);
for(int i = 1, a, b; i <= m; i ++) {
scanf("%d %d", &a, &b);
int lca = LCA(a, b);
++ coun[a], ++ coun[b], coun[lca] -= 2;
}
dfs(1, 0);
int m1 = 0, m2 = 0;
for(int i = 2; i <= n; i ++) {
if(coun[i] == 0) m1 ++;
else if(coun[i] == 1) m2 ++;
}
printf("%d\n", m1 * m + m2);
return 0;
}
2015沈阳网络赛 HDU 5452 Minimum Cut
必须删一个树边 和 删其他 非树边 最少 删几个 不连通
只要有一个 树边 没有被覆盖过 删他就完成了 次数是1
如果没有 找 最小被覆盖的 + 1 所有路过这树边的边 + 这个树边
#include <bits/stdc++.h>
using namespace std;
const int maxn = 4e5 + 10;
int n, m, cas;
int head[maxn], cnt;
int nxt[maxn << 1], to[maxn << 1];
void ade(int a, int b) {
to[++ cnt] = b;
nxt[cnt] = head[a], head[a] = cnt;
}
int depth[maxn], fa[maxn][25];
void dfs_lca(int x, int pre) {
depth[x] = depth[pre] + 1;
fa[x][0] = pre;
for(int i = 1; (1 << i) <= depth[x]; i ++)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(int i = head[x]; i; i = nxt[i])
if(to[i] != pre) {
dfs_lca(to[i], x);
}
}
int LCA(int x, int y) {
if(depth[x] > depth[y]) swap(x, y);
for(int i = 24; ~i; -- i)
if(depth[x] <= depth[y] - (1 << i))
y = fa[y][i];
if(x == y) return x;
for(int i = 24; ~i; -- i)
if(fa[x][i] != fa[y][i])
x = fa[x][i], y =fa[y][i];
return fa[x][0];
}
int coun[maxn];
void dfs(int x, int pre) {
for(int i = head[x]; i; i = nxt[i]) {
int y = to[i];
if(y == pre) continue;
dfs(y, x);
coun[x] += coun[y];
}
}
signed main() {
scanf("%d", &cas);
for(int CAS = 1; CAS <= cas; CAS ++) {
scanf("%d %d", &n, &m);
memset(head, 0, (n + 5) * sizeof (int));
cnt = 0;
for(int i = 1, a, b; i < n; i ++) {
scanf("%d %d", &a, &b);
ade(a, b), ade(b, a);
}
dfs_lca(1, 0);
memset(coun, 0, (n + 5) * sizeof(int));
for(int i = 1, a, b; i <= m - n + 1; i ++) {
scanf("%d %d", &a, &b);
int lca = LCA(a, b);
++ coun[a], ++ coun[b], coun[lca] -= 2;
}
dfs(1, 0);
int ans = 0x3f3f3f3f;
for(int i = 2; i <= n; i ++) {
if(coun[i] == 0) ans = 1;
else if(coun[i]) ans = min(ans, coun[i] + 1);
}
printf("Case #%d: ", CAS);
printf("%d\n", ans);
}
return 0;
}