题目主要信息
1、找到其中最长的回文子串长度
2、输入一个字符串(字符串的长度不超过2500)
方法一:动态规划
具体方法
对于一个字符串,如果是回文串,并且长度大于 2,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串 “ababa”,如果我们已经知道“bab” 是回文串,那么“ababa” 一定是回文串,这是因为它的首尾两个字母都是“a”。
表示字符串s的第i到j个字母组成的子串是否为回文串,可能是true也可能是false。
则动态规划的转移方程为:
P(i,j) = P(i+1,j-1) & (Si==Sj)
也就是说,只有是回文串,并且 s的第i和 j 个字母相同时,才会是回文串。
Java代码
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
String s = bf.readLine();
System.out.println(longestPalindrome(s).length());
}
public static String longestPalindrome(String s) {
//长度小于2直接返回
if (s.length()<2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i..j] 是否是回文串
int len = s.length();
boolean[][] dp = new boolean[len][len];
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
char[] charArray = s.toCharArray();
// 递推开始
// 先枚举子串长度
for (int L = 2; L <= len; L++) {
// 枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < len; i++) {
// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
int j = L + i - 1;
// 如果右边界越界,就可以退出当前循环
if (j >= len) {
break;
}
if (charArray[i] != charArray[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}
复杂度分析
- 时间复杂度:, 是字符串的长度。
- 空间复杂度:,即存储动态规划状态需要的空间。
方法二:中心拓展法
具体方法
可以发现,所有的状态在转移的时候的可能性都是唯一的。也就是说,我们可以从每一种边界情况开始「扩展」,也可以得出所有的状态对应的答案。
Java代码
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
String s = bf.readLine();
System.out.println(longestPalindrome(s).length());
}
public static String longestPalindrome(String s) {
if (s == null || s.length() < 1) {
return "";
}
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
//找最长的
int len1 = Center(s, i, i);
int len2 = Center(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
public static int Center(String s, int left, int right) {
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
--left;
++right;
}
return right - left - 1;
}
}
复杂度分析
- 时间复杂度:, 是字符串的长度。
- 空间复杂度:。