题目意思

给你个01地图大小n * m,你只能走最大T个1的地方。
问你能最远走多远?起点随便选终点距离最远即可。地图规模最大30 * 30

解题思路

地图规模比较小,可以随便写复杂度,那么我们直接使用最暴力的算法,枚举每一个位置成为起点,对每一个位置算一次DFS,把去到每一个点的最短1的数量算出来,当然稍微减枝一下,如果超过了T个1直接保持无穷大不需要递归,还一个就是最优性减枝,第二次来到这个地方花费比之前还多,那也没必要走下去了。这样算出每一个地方需要踩过的1的数量,在枚举全部的终点去判断起点终点距离求MAX即可。

#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar())    s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op)    putchar(op); return; }    char F[40]; ll tmp = x > 0 ? x : -x;    if (x < 0)putchar('-');    int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';        tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]);    if (op)    putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;    while (b) { if (b & 1)    ans *= a;        b >>= 1;        a *= a; }    return ans; }    ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;

const int N = 32;
int a[N][N], cnt[N][N];
int n, m, t;

void dfs(int x, int y, int step) {
    if (step > t)    return;
    if (step >= cnt[x][y])    return;
    cnt[x][y] = step;
    for (int i = 0; i < 4; ++i) {
        int xx = x + dir[i][0], yy = y + dir[i][1];
        if (xx <= 0 or xx > n or yy <= 0 or yy > m)    continue;
        dfs(xx, yy, step + a[xx][yy]);
    }
}

int main() {
    scanf("%d %d %d", &n, &m, &t);
    for (int i = 1; i <= n; ++i) {
        char s[N];
        scanf("%s", s + 1);
        for (int j = 1; j <= m; ++j)
            a[i][j] = s[j] - '0';
    }
    int ans = 0;
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= m; ++j) {
            memset(cnt, 0x3f, sizeof cnt);
            dfs(i, j, a[i][j]);
            for (int ii = 1; ii <= n; ++ii)
                for (int jj = 1; jj <= m; ++jj)
                    if (cnt[ii][jj] <= t)
                        ans = max(ans, (ii - i) * (ii - i) + (jj - j) * (jj - j));
        }
    printf("%.6f\n", sqrt(ans));
    return 0;
}