非常好的推式子的题
用到了很多知识点
推式子,
先交换 i j 目的是把K放到外面来
后面先卷积预处理
得到p[j]
然后继续推式子
利用
得到
瞎卷一波就可以了。
注意一下 k−j 可能是负数,所以要倍长一下
要么三模数NTT,要么拆系数FFT
FFT 更快些
#include <algorithm>
#include <cstdio>
#include <cstring>
#include<iostream>
using namespace std;
int mod=1e6+3;
typedef long long ll;
namespace Math
{
inline int pw(int base, int p, const int mod)
{
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x, const int mod)
{
return pw(x, mod - 2, mod);
}
}
long long qpow(long long a,long long n)
{
long long ans=1;
while(n)
{
if(n&1)
ans=ans*a%mod;
a=a*a%mod;
n>>=1;
}
return ans;
}
using namespace Math;
const int mod1 = 998244353, mod2 = 1004535809, mod3 = 469762049, G = 3;
const long long mod_1_2 = static_cast<long long> (mod1) * mod2;
const int inv_1 = Math::inv(mod1, mod2), inv_2 = Math::inv(mod_1_2 % mod3, mod3);
struct Int
{
int A, B, C;
explicit inline Int() { }
explicit inline Int(int __num) : A(__num), B(__num), C(__num) { }
explicit inline Int(int __A, int __B, int __C) : A(__A), B(__B), C(__C) { }
static inline Int reduce(const Int &x)
{
return Int(x.A + (x.A >> 31 & mod1), x.B + (x.B >> 31 & mod2), x.C + (x.C >> 31 & mod3));
}
inline friend Int operator + (const Int &lhs, const Int &rhs)
{
return reduce(Int(lhs.A + rhs.A - mod1, lhs.B + rhs.B - mod2, lhs.C + rhs.C - mod3));
}
inline friend Int operator - (const Int &lhs, const Int &rhs)
{
return reduce(Int(lhs.A - rhs.A, lhs.B - rhs.B, lhs.C - rhs.C));
}
inline friend Int operator * (const Int &lhs, const Int &rhs)
{
return Int(static_cast<long long> (lhs.A) * rhs.A % mod1, static_cast<long long> (lhs.B) * rhs.B % mod2, static_cast<long long> (lhs.C) * rhs.C % mod3);
}
inline int get()
{
long long x = static_cast<long long> (B - A + mod2) % mod2 * inv_1 % mod2 * mod1 + A;
return (static_cast<long long> (C - x % mod3 + mod3) % mod3 * inv_2 % mod3 * (mod_1_2 % mod) % mod + x) % mod;
}
} ;
#define maxn 262144
namespace Poly
{
#define N (maxn << 1)
int lim, s, rev[N];
Int Wn[N | 1];
inline void init(int n)
{
s = -1, lim = 1;
while (lim < n) lim <<= 1, ++s;
for (register int i = 1; i < lim; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
const Int t(Math::pw(G, (mod1 - 1) / lim, mod1), Math::pw(G, (mod2 - 1) / lim, mod2), Math::pw(G, (mod3 - 1) / lim, mod3));
*Wn = Int(1);
for (register Int *i = Wn; i != Wn + lim; ++i) *(i + 1) = *i * t;
}
inline void NTT(Int *A, const int op = 1)
{
for (register int i = 1; i < lim; ++i) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (register int mid = 1; mid < lim; mid <<= 1)
{
const int t = lim / mid >> 1;
for (register int i = 0; i < lim; i += mid << 1)
{
for (register int j = 0; j < mid; ++j)
{
const Int W = op ? Wn[t * j] : Wn[lim - t * j];
const Int X = A[i + j], Y = A[i + j + mid] * W;
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
}
if (!op)
{
const Int ilim(Math::inv(lim, mod1), Math::inv(lim, mod2), Math::inv(lim, mod3));
for (register Int *i = A; i != A + lim; ++i) *i = (*i) * ilim;
}
}
#undef N
}
using namespace Poly;
Int A[maxn << 1], B[maxn << 1],C[maxn << 1 ];
int N=(maxn-312);
ll fac[maxn];
ll ner[maxn];
int a[maxn];
ll temp[maxn];
ll p[maxn];
void f()
{
lim=0, s=0;
memset(rev,0,sizeof(rev));
memset(Wn,0,sizeof(Wn));
memset(A,0,sizeof(A));
memset(B,0,sizeof(B));
}
ll c2[maxn];
int main()
{
fac[0]=1;
for(ll i=1; i<=N; i++)
fac[i]=fac[i-1]*i%mod;
ner[N]=pw(fac[N],mod-2,mod);
for(ll i=N-1; i>=0; i--)
ner[i]=(ner[i+1]*(i+1))%mod;
ll n,b,c,d;
scanf("%lld%lld%lld%lld",&n,&b,&c,&d);
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
}
for (ll i = 0, x; i <=n; ++i)
{
temp[i] =a[n-i]*fac[n-i]%mod;
}
long long x=1;
for (ll i = 0; i <=n; ++i)
{
B[i] =Int(ner[i]*x%mod);
x=x*d%mod;
}
//reverse(temp,temp+1+n);
for (ll i = 0, x; i <=n; ++i)
{
A[i]=Int(temp[i]);
}
init(n+n+2);
NTT(A), NTT(B);
for (ll i = 0; i < lim; ++i) A[i] = A[i] * B[i];
NTT(A, 0);
for (ll i = 0; i <=n; ++i)
{
p[n-i]=A[i].get();
}
f();
x=1;
for(ll i=0;i<maxn;i++)
{
c2[i]=qpow(c,(ll)i*i);
}
for (ll i = 0; i <=n; ++i)
{
A[i]=Int(x*c2[i]%mod*ner[i]%mod*p[i]%mod);
x=x*b%mod;
}
for (ll i = 0; i <=n; ++i)
{
B[n-i]=B[n+i]=Int(qpow(c2[i],mod-2));
}
init(n+n*2+2);
NTT(A), NTT(B);
for (ll i = 0; i < lim; ++i) A[i] = A[i] * B[i];
NTT(A, 0);
for(ll i=0;i<n;i++)
{
printf("%lld\n",((A[n+i].get())%mod*c2[i]%mod)%mod);
}
return 0;
}