父子类关系:策略模式,模板方法模式
两个类之间:观察者模式,迭代子模式,责任链模式,命令模式
类的状态:备忘录模式,状态模式
通过中间类:访问者模式,中介模式,解释器模式

策略模式

策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数。

//统一接口类提供方法
public interface ICalculator{
    public int calculate(String exp);
}
//辅助类
public abstract class AbstractCalculator{
    public int[] split(String exp,String opt){
        String array[] = exp.split(opt);
        int arrayInt[] = new int[2];
        arrayInt[0] = Integer.parseInt(array[0]);
        arrayInt[1] = Integer.parseInt(array[1]);
        return arrayInt;
    }
}
public class Plus extends AbstractCalculator implements ICalculator{
    @Override
    public int calculate(String exp){
        int arrayInt[] = split(exp,"\\+");
        return arrayInt[0]+arrayInt[1];
    }
}
public class Minus extends AbstractCalculator implements ICalculator{
    @Override
    public int calculate(String exp){
        int arrayInt[] = split(exp,"-");
        return arrayInt[0]-arrayInt[1];
    }
}
public class Multiply extends AbstractCalculator implements ICalculator{
    @Override
    public int calculate(String exp){
        int arrayInt[] = split(exp,"\\*");
        return arrayInt[0]*arrayInt[1];
    }
}
public class StrategyTest{
    public static void main(String[] args){
        String exp = "2+8";
        ICalculator cal = new Plus();
        int result = cal.calculate(exp);
        System.out.println(result);
    }
}
策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。

模板方法模式

一个抽象类中,有一个主方法,再定义 1...n 个方法,可以是抽象的,也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用

就是在 AbstractCalculator 类中定义一个主方法 calculate,calculate()调用 spilt()等,Plus 和Minus 分别继承 AbstractCalculator 类,通过对 AbstractCalculator 的调用实现对子类的调用。
钩子方法--即方法回调。
步骤很固定,但某些方法易变,所以将易变的方法抽象出来。
public abstract class AbstractCalculator{
    //主方法,实现对本类其他方法的调用
    public final int calculate(String exp,String opt){
        int array[] = split(exp,opt);
        return calculate(array[0],array[1]);
    }
    
    //被子类重写的方法
    abstract public int calculate(int num1,int num2);
    
    public int[] split(String exp,String opt){
        String array[] = exp.split(opt);
        int arrayInt[] = new int[2];
        arrayInt[0] = Integer.parseInt(array[0]);
        arrayInt[1] = Integer.parseInt(array[1]);
        return arrayInt;
    }
}
public class Plus extends AbstractCalculator{
    @Override
    public int calculate(int num1,int num2){
        return num1+num2;
    }
}
public class StrategyTest{
    public static void main(String[] args){
        String exp = "8+8";
        AbstractCalculator cal = new Plus();
        int result = cal.calculate(exp,"\\+");
        System.out.println(result);
    }
}
首先将 exp 和"\\+"做参数,调用 AbstractCalculator 类里的calculate(String,String)方法,在 calculate(String,String)里调用同类的 split(),之后再调用calculate(int ,int)方法,从这个方法进入到子类中,执行完 return num1 + num2 后,将值返回到 AbstractCalculator 类,赋给 result

观察者模式

当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。

MySubject 类就是我们的主对象,Observer1 和 Observer2 是依赖于MySubject 的对象,当 MySubject 变化时,Observer1 和 Observer2 必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象,且当 MySubject变化时,负责通知在列表内存在的对象。
public interface Observer{
    public void update();
}
//两个实现类
public class Observer1 implements Observer{
    @Override
    public void update(){
        System.out.println("观察者1收到");
    }
}

public class Observer2 implements Observer{
    @Override
    public void update(){
        System.out.println("观察者2收到");
    }
}

public interface Subject{
    //增加观察者
    public void add(Observer observer);
    
    //删除观察者
    public void del(Observer observer);
    
    //通知所有的观察者
    public void notifyObservers();
    
    //自身操作
    public void operation();
}
public abstract class AbstractSubject implements Subject{
    private Vector<Observer> vector = new Vector<Observer>();
    
    @Override
    public void add(Observer observer){
        vector.add(observer);
    }
    @Override
    public void del(Observer observer){
        vector.remove(observer);
    }
    @Override
    public void notifyObservers(){
        Enumeration<Observer> enumo = vector.elements();
        while(enumo.hasMoreElements()){
            enumo.nextElement().update();
        }
    }
}
public class MySubject extends AbstractSuject{
    @Override
    public void operation(){
        System.out.println("update selef");
        notifyObservers();
    }
}
public class ObserverTest{
    public static void main(String[] args){
        Suject sub = new MySubject();
        sub.add(new Observer1());
        sub.add(new Observer2());
        
        sub.operation();
    }
}

Java内部已经有两个包:java.util.Observable   

迭代子模式

迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松。这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问。
MyCollection 中定义了集合的一些操作,MyIterator 中定义了一系列迭代操作,且持有 Collection 实例。

public interface Collection{
    public Iterator iterator();
    //取得集合元素
    public Object get(int i);
    
    //取得集合大小
    public int size();
}
public interface Interator{
    //前移
    public Object previous();
    //后移
    public Object next();
    public boolean hasNext();
    
    //取得第一个元素
    public Object first();
    
}
public class MyCollection implements Collection{
    public String string[] = {"A","B","C","D","E"};
    @Override
    public Interator iterator(){
        return new MyIterator(this);
    }
    @Override
    public Object get(int i){
        return string[i];
    }
    @Override
    public int size(){
        return string.length;
    }
}
public class MyIterator implements Iterator{
    private Collection collection;
    private int pos = -1;
    
    public MyIterator(Collection collection){
        this.collection = collection;
    }
    
    @Override
    public Object previous(){
        if(pos > 0){
            pos--;
        }
        return collection.get(pos);
    }
    @Override
    public Object next(){
        if(pos<collection.size()-1{
            pos++;
        }
        return collection.get(pos);
    }
    @Override
    public boolean hasNext(){
        if(pos<collection.size()-1){
            return true;
        }else{
            return false;
        }
    }
    @Override
    public Object first(){
        pos = 0;
        return collection.get(pos);
    }
}

public class Test{
    public static void main(String[] args){
        Collection collection = new MyCollection();
        Iterator it = collection.iterator();
        
        while(it.hasNext()){
            System.out.println(it.next());
        }
    }
}
其实 JDK 中各个类也都是这些基本的东西,加一些设计模式,再加一些优化放到一起的,只要我们把这些东西学会了,掌握好了,我们也可以写出自己的集合类,甚至框架

责任链模式

有多个对象,每个对象持有对下一个对象的引用,这样就会形成一条链,请求在这条链上传递,直到某一对象决定处理该请求。但是发出者并不清楚到底最终那个对象会处理该请求,所以,责任链模式可以实现,在隐瞒客户端的情况下,对系统进行动态的调整。
Abstracthandler 类提供了 get 和 set 方法,方便 MyHandle 类设置和修改引用对象,MyHandle类是核心,实例化后生成一系列相互持有的对象,构成一条链 。
由于责任链的创建完全在客户端,因此新增的具体处理者对原有类库没有任何影响,只需要添加新的类,然后在客户端调用时添加即可。符合开闭原则


public interface Handler{
    public void operator();
}
public abstract class AbstractHandler{
    private Handler handler;
    public Handler getHandler(){
        return handler;
    }
    public void setHandler(Handler handler){
        this.handler = handler;
    }
}
public class MyHandler extends AbstractHandler implements Handler{
    private String name;
    public MyHandler(String name){
        this.name = name;
    }
    @Override
    public void operator(){
        System.out.println(name+"deal!");
        if(getHandler()!=null){
            getHandler().operator();
        }
    }
   
}

public class Test{
    public static void main(String[] args){
        MyHandler h1 = new MyHandler("h1");
        MyHandler h2 = new MyHandler("h2");
        MyHandler h3 = new MyHandler("h3");
        
        h1.setHandler(h2);
        h2.setHandler(h3);
        
        h1.operator();
    }
}
链接上的请求可以是一条链,可以是一个树,还可以是一个环,模式本身不约束这个,需要我们自己去实现,同时,在一个时刻,命令只允许由一个对象传给另一个对象,而不允许传给多个对象 。

命令模式

Invoker 是调用者(司令员),Receiver 是被调用者(士兵),MyCommand 是命令,实现了Command 接口,持有接收对象

开发场景:
  • Struts2中,action整个调用过程就有命令模式
  • 数据库事务机制底层实现
  • 命令的撤销和恢复

public interface Command{
    public void exe();
}
public class MyCommanad implements Command{
    private Receiver receiver;
    public MyCommand(Receiver receiver){
        this.receiver = receiver;
    }
    @Override
    public void exe(){
        receiver.action();
    }
}
public class Receiver{
    public void action(){
        System.out.println("command received");
    }
}
public class Invoker{
    private Commanad command;
    public Invoker(Command command){
        this.command = command;
    }
    public void action(){
        command.exe();
    }
}
public class Test{
    public static void main(String[] args){
        Receiver receiver = new Receiver();
        Command cmd = new Command(receiver);
        Invoker invoker = new Invoker(cmd);
        invoker.action();
    }
}
命令模式的目的就是达到命令的发出者和执行者之间解耦,实现请求和执行分开,熟悉 Struts 的同学应该知道,Struts 其实就是一种将请求和呈现分离的技术,其中必然涉及命令模式的思想!

备忘录模式

主要目的是保存一个对象的某个状态,以便在适当的时候恢复对象,个人觉得叫备份模式更形象些,通俗的讲下:假设有原始类 A,A 中有各种属性,A 可以决定需要备份的属性,备忘录类 B 是用来存储 A 的一些内部状态,类 C 呢,就是一个用来存储备忘录的,且只能存储,不能修改等操作。
Original 类是原始类,里面有需要保存的属性 value 及创建一个备忘录类,用来保存 value 值。Memento 类是备忘录类,Storage 类是存储备忘录的类,持有 Memento 类的实例,该模式很好理解。


public class Original{
    private String value;
    public String getValue(){
        return value;
    }
    public void setValue(String value){
        this.value = value;
    }
    public Original(String value){
        this.value = value;
    }
    public Memento createMemento(){
        return new Memento(value);
    }
    public void restoreMemento(Memento memento){
        this.value = memento.getValue();
    }
}
public class Memento{
    private String value;
    public Memento(String value){
        this.value = value;
    }
    public String getValue(){
        return value;
    }
    public void setValue(String value){
        this.value = value;
    }
}
public class Storage{
    private Memento memento;
    public Storage(Memento memento){
        this.memento = memento;
    }
    public Memento getMemento(){
        return memento;
    }
    public void setMemento(Memento menento){
        this.memento = memento;
    }
}
public class Test{
    public static void main(String[] args){
        //创建原始类
        Original origi = new Original("egg");
        
        //创建备忘录
        Storage storage = new Storage(origi.createMemento());
        
        //修改原始类的状态
        System.out.println("初始化状态为:"+origi.getValue());
        origi.setValue("niu");
        System.out.println("修改后的状态为"+origi.getValue());
        
        //回复原始类的状态
        origi.restoreMemento(storage.getMemento());
        System.out.println("恢复后的状态为"+origi.getValue());
    }
}
新建原始类时,value 被初始化为 egg,后经过修改,将 value 的值置为 niu,最后倒数第二行进行恢复状态,结果成功恢复了。其实我觉得这个模式叫“备份-恢复”模式最形象。

状态模式

核心思想就是:当对象的状态改变时,同时改变其行为,很好理解!就拿 QQ 来说,有几种状态,在线、隐身、忙碌等,每个状态对应不同的操作,而且你的好友也能看到你的状态,所以,状态模式就两点:1、可以通过改变状态来获得不同的行为。2、你的好友能同时看到你的变化。
State 类是个状态类,Context 类可以实现切换

public class State{
    private String value;
    public String getValue(){
        return value;
    }
    public void setValue(String value){
        this.value = value;
    }
    public void method1(){
        System.out.println("execute the first opt");
    }
    public void method2(){
        System.out.println("execute the second opt");
    }
}
public class Context{
    private State state;
    public Context(State state){
        this.state = state;
    }
    public State getState(){
        return state;
    }
    public void setState(State state){
        this.state = state;
    }
    public void method(){
        if(state.getValue().equals("state1")){
            state.method1();
        }else if(state.getValue().eauqls("state2")){
            state.method2();
        }
    }
}
public class Test{
    public static void main(String[] args){
        State state = new State();
        Context context = new Context(state);
        
        //设置第一种状态
        state.setValue("state1");
        context.method();
        
        //设置第二种状态
        state.setValue("state2");
        context.method();
    }
}

根据这个特性,状态模式在日常开发中用的挺多的,尤其是做网站的时候,我们有时希望根据对象的某一属性,区别开他们的一些功能,比如说简单的权限控制等 。
银行系统中账号状态管理
OA系统中公文状态的管理
酒店系统中,房间状态的管理
线程对象之间的切换

访问者模式

访问者模式把数据结构和作用于结构上的操作解耦合,使得操作集合可相对自由地演化。访问者模式适用于数据结构相对稳定算法又易变化的系统。因为访问者模式使得算法操作增加变得容易。若系统数据结构对象易于变化,经常有新的数据对象增加进来,则不适合使用访问者模式。访问者模式的优点是增加操作很容易,因为增加操作意味着增加新的访问者。访问者模式将有关行为集中到一个访问者对象中,其改变不影响系统数据结构。其缺点就是增加新的数据结构很困难。
简单来说,访问者模式就是一种分离对象数据结构与行为的方法,通过这种分离,可达到为一个被访问者动态添加新的操作而无需做其它的修改的效果。

public interface Visitor{
    public void visit(Subject sub);
}
public class MyVisitor implements Visitor{
    @Override
    public void visit(Subject sub){
        System.out.println("visit the subject"+sub.getSubject());
    }
}
Subject 类,accept 方法,接受将要访问它的对象,getSubject()获取将要被访问的属性
public interface Subject{
    public void accept(Visitor visitor);
    public String getSubject();
}
public class MySubject implements Subject{
    public void accept(Visitor visitor){
        visitor.visit(this);
    }
    @Override
    public String getSubject(){
        return "love";
    }
}
public class Test{
    public static void main(String[] args){
        Visitor visitor = new MyVisitor();
        Suject sub = new MySubject();
        sub.accept(visitor);
    }
}
该模式适用场景:如果我们想为一个现有的类增加新功能,不得不考虑几个事情:1、新功能会不会与现有功能出现兼容性问题?2、以后会不会再需要添加?3、如果类不允许修改代码怎么办?面对这些问题,最好的解决方法就是使用访问者模式,访问者模式适用于数据结构相对稳定的系统,把数据结构和算法解耦

中介模式

中介者模式也是用来降低类类之间的耦合的,因为如果类类之间有依赖关系的话,不利于功能的拓展和维护,因为只要修改一个对象,其它关联的对象都得进行修改。如果使用中介者模式,只需关心和Mediator 类的关系,具体类类之间的关系及调度交给 Mediator 就行,这有点像spring 容器的作用。
User 类统一接口,User1 和 User2 分别是不同的对象,二者之间有关联,如果不采用中介者模式,则需要二者相互持有引用,这样二者的耦合度很高,为了解耦,引入了 Mediator 类,提供统一接口MyMediator 为其实现类,里面持有 User1 和 User2 的实例,用来实现对 User1和 User2 的控制。这样 User1 和 User2 两个对象相互独立,他们只需要保持好和 Mediator 之间的关系就行,剩下的全由 MyMediator 类来维护


public interface Mediator{
    public void createMediator();
    public void workAll();
}
public class MyMediator implements Mediator{
    private User user1;
    private User user2;
    public User getUser1(){
        return user1;
    }
    public User getUser2(){
        return user2;
    }
    @Override
    public void createMediator(){
        user1 = new User1(this);
        user2 = new User2(this);
    }
    @Override
    public void workAll(){
        user1.work();
        user2.work();
    }
}
public abstract class User{
    private Mediator mediator;
    public Mediator getMediator(){
        return mediator;
    }
    public User(Mediator mediator){
        this.mediator = mediator;
    }
    public abstract void work();
}
public class User1 extends User{
    public User1(Mediator mediator){
        super(mediator);
    }
    @Override
    public void work(){
        System.out.println("user1 exe");
    }
}
public class User2 extends User{
    public User2(Mediator mediator){
        super(mediator);
    }
    @Override
    public void work(){
        System.out.println("user2 exe");
    }
}
public class Test{
    public static void main(String[] args){
        Mediator mediator = new MyMediator();
        mediator.createMediator();
        mediator.workAll();
    }
}

解释器模式

Context 类是一个上下文环境类,Plus 和 Minus 分别是用来计算的实现.
开发一种新的语言可以考虑使用,但比较麻烦在维护

开放场景:

  • EL表达式处理
  • 正则表达式解释器
  • SQL语法解释器
  • 数学表达式解析器 MESP

public interface Expression{
    public int interpret(Context context);
}
public class Plus implements Expression{
    @Override
    public int interpret(Context context){
        return context.getNum1()+context.getNum2();
    }
}
public class Minus implements Expression{
    @Override
    public int interpret(Context context){
        return context.getNum1()-context.getNum2();
    }
}
public class Context{
    private int num1;
    private int num2;
    public Context(int num1,int num2){
        this.num1 = num1;
        this.num2 = num2;
    }
    public int getNum1(){
        return num1;
    }
    public void setNum1(int num1){
        this.num1 = num1;
    }
    public int getNum2(){
        return num2;
    }
    public void setNum2(int num2){
        this.num2 = num2;
    }
}
public class Test{
    public static void main(String[] args){
        int result = new Minus().interpret(new Context(new Plus().interpret(new Context(9,2)),8));
        System.out.println(result);
    }
}
基本就这样,解释器模式用来做各种各样的解释器,如正则表达式等的解释器等等