牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献)
链接:https://ac.nowcoder.com/acm/contest/141/H来源:牛客网
Eddy has solved lots of problem involving calculating the number of coprime pairs within some range. This problem can be solved with inclusion-exclusion method. Eddy has implemented it lots of times. Someday, when he encounters another coprime pairs problem, he comes up with diff-prime pairs problem. diff-prime pairs problem is that given N, you need to find the number of pairs (i, j), where igcd(i,j)\frac{i}{gcd(i, j)}gcd(i,j)i and jgcd(i,j)\frac{j}{gcd(i,j)}gcd(i,j)j are both prime and i ,j ≤ N. gcd(i, j) is the greatest common divisor of i and j. Prime is an integer greater than 1 and has only 2 positive divisors.
Eddy tried to solve it with inclusion-exclusion method but failed. Please help Eddy to solve this problem.
Note that pair (i1, j1) and pair (i2, j2) are considered different if i1 ≠ i2 or j1 ≠ j2.
输入描述:
Input has only one line containing a positive integer N.1 ≤ N ≤ 107
输出描述:
Output one line containing a non-negative integer indicating the number of diff-prime pairs (i,j) where i, j ≤ N
示例1
输入
[复制](javascript:void(0)😉
3
输出
[复制](javascript:void(0)😉
2
示例2
输入
[复制](javascript:void(0)😉
5
输出
[复制](javascript:void(0)😉
6
题意:
给你一个整数n(范围是\([1,1e7]\)),问你有多少个数对\((i,j)\) 满足 \(i/gcd(i,j)\)和 \(j/gcd(i,j)\) 都是质数。
思路:
通过分析(打表)可以发现,对于小于等于n的质数i,j,对答案的贡献是\(min(n/i,n/j)\)
那么我们可以筛1~N 中质数的同时,维护答案,
我们来看有序对(i,j)(i < j)对答案的贡献一定是 n/j ,
那么我们用一个cnt记录当前前面已经有多少个质数了,在筛后直接维护答案即可。(因为筛后可以从小到大分别求出每一个质数)
最后答案*2(有序对的反过来)
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1e7 + 50;
bool noprime[maxn + 50];
std::vector<int> p;
ll ans = 0ll;
ll n;
int getPrime()
{
// 华丽的初始化
memset(noprime, false, sizeof(noprime));
p.clear();
int m = (int)sqrt(maxn + 0.5);
// 优化的埃筛
for (int i = 2; i <= m; i++)
{
if (!noprime[i])
{
for (int j = i * i; j <= maxn; j += i)
{
noprime[j] = true;
}
}
}
ll cnt = 0ll;
// 把素数加到vector里
for (int i = 2; i <= n; i++)
{
if (!noprime[i])
{
ans += cnt * (n / i);
cnt++;
p.push_back(i);
}
}
//返回vector的大小
return p.size();
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
if (n <= 2)
{
cout << 0 << endl;
} else
{
getPrime();
cout << ans * 2ll << endl;
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}