当点的顺序被打乱:
时间复杂度: O ( N ) O(N) O(N)
空间复杂度: O ( N ) O(N) O(N)
否则,时间复杂度可能为 O ( N 3 ) O(N^3) O(N3)
#include<bits/stdc++.h>
using namespace std;
const int N=5e3+10;
const double eps=1e-12;
double R;
int n;
struct node
{
double x,y;
}point[N],O;
double getDistance(node p)//与圆心之间的距离
{
return sqrt((p.x-O.x)*(p.x-O.x)+(p.y-O.y)*(p.y-O.y));
}
void getCircle(node p1,node p2,node p3)//三点确定圆心
{
double a,b,c,d,e,f;
a=p1.x-p2.x;
b=p1.y-p2.y;
c=p1.x-p3.x;
d=p1.y-p3.y;
e=p1.x*p1.x+p1.y*p1.y-p2.x*p2.x-p2.y*p2.y;
f=p1.x*p1.x+p1.y*p1.y-p3.x*p3.x-p3.y*p3.y;
O.x=(b*f-d*e)/(2*b*c-2*a*d);
O.y=(c*e-a*f)/(2*b*c-2*a*d);
R=getDistance(p1);
}
bool inCircle(node p)//判断是否在园内
{
return R>=getDistance(p)+eps;
}
void minCircle()//最小圆
{
O=point[0];
R=0;
for(int i=0;i<n;i++)
{
if(!inCircle(point[i]))
{
O=point[i];
R=0;
for(int j=0;j<i;j++)
{
if(!inCircle(point[j]))
{
O.x=(point[i].x+point[j].x)/2;
O.y=(point[i].y+point[j].y)/2;
R=getDistance(point[j]);
for(int k=0;k<j;k++)
{
if(!inCircle(point[k]))
{
getCircle(point[i],point[j],point[k]);
}
}
}
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%lf%lf",&point[i].x,&point[i].y);
random_shuffle(point,point+n);//将点的次序打乱,使算法复杂度趋向于O(N)
minCircle();
printf("%.10f",R);
}