题目描述
给你n个节点的二叉树,其中 n <= 1e6
下面给出一行n个数据用空格分开,代表每个节点的权值大小。
在下面n行,代表第 i 行的节点的左子树和右子树是谁,需要你判断最大的相等二叉树节点个数是几?
Solution
梦回数据结构,二叉树判断相等根据题目描述,可以使用递归定义判断,那么就是对应枚举每个节点作为根节点,判断它符不符合相等二叉树的定义,如果符合就拿它的子树大小和答案取最大值即可,那么对于树型结构来说,判断每个节点为根的情况下它总的节点个数是多少,可以使用 dfs 的简单树形 dp 方法加和求解。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__)) typedef long long ll; typedef unsigned long long ull; typedef long double ld; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int MOD = 1e9 + 7; const int INF = 0x3f3f3f3f; const int N = 1e6 + 7; int val[N], sz[N], lson[N], rson[N]; void dfs(int x) { sz[x] = 1; if (lson[x] != -1) dfs(lson[x]), sz[x] += sz[lson[x]]; if (rson[x] != -1) dfs(rson[x]), sz[x] += sz[rson[x]]; } bool check(int l, int r) { if (l == -1 and r == -1) return true; // 叶子节点 if (l != -1 and r != -1 and val[l] == val[r] and check(lson[l], rson[r]) and check(lson[r], rson[l])) // 有左子一定要有右子,并且权值要相等 return true; return false; } int main() { int n = read(); for (int i = 1; i <= n; ++i) val[i] = read(); for (int i = 1; i <= n; ++i) lson[i] = read(), rson[i] = read(); dfs(1); int ans = 1; for (int i = 1; i <= n; ++i) if (check(lson[i], rson[i])) ans = max(ans, sz[i]); print(ans); return 0; }