题目描述

给你n个节点的二叉树,其中 n <= 1e6
下面给出一行n个数据用空格分开,代表每个节点的权值大小。
在下面n行,代表第 i 行的节点的左子树和右子树是谁,需要你判断最大的相等二叉树节点个数是几?

Solution

梦回数据结构,二叉树判断相等根据题目描述,可以使用递归定义判断,那么就是对应枚举每个节点作为根节点,判断它符不符合相等二叉树的定义,如果符合就拿它的子树大小和答案取最大值即可,那么对于树型结构来说,判断每个节点为根的情况下它总的节点个数是多少,可以使用 dfs 的简单树形 dp 方法加和求解。

#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar())    s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op)    putchar(op); return; }    char F[40]; ll tmp = x > 0 ? x : -x;    if (x < 0)putchar('-');    int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';        tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]);    if (op)    putchar(op); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;    while (b) { if (b & 1)    ans *= a;        b >>= 1;        a *= a; }    return ans; }    ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;

const int N = 1e6 + 7;
int val[N], sz[N], lson[N], rson[N];

void dfs(int x) {
    sz[x] = 1;
    if (lson[x] != -1)
        dfs(lson[x]), sz[x] += sz[lson[x]];
    if (rson[x] != -1)
        dfs(rson[x]), sz[x] += sz[rson[x]];
}

bool check(int l, int r) {
    if (l == -1 and r == -1)    return true; // 叶子节点
    if (l != -1 and r != -1 and val[l] == val[r] and
        check(lson[l], rson[r]) and check(lson[r], rson[l])) // 有左子一定要有右子,并且权值要相等
        return true;
    return false;
}

int main() {
    int n = read();
    for (int i = 1; i <= n; ++i)
        val[i] = read();
    for (int i = 1; i <= n; ++i)
        lson[i] = read(), rson[i] = read();
    dfs(1);
    int ans = 1;
    for (int i = 1; i <= n; ++i)
        if (check(lson[i], rson[i]))
            ans = max(ans, sz[i]);
    print(ans);
    return 0;
}