没有上司的舞会
思路
- f[i][0]:在以i为根的子树中选,不选i的最大快乐值;f[i][1]$:选i的最大快乐值
- 递归实现,复杂度O(n−1),n−1为树中的边数
代码
#include <iostream>
#include <cstring>
using namespace std;
const int N = 6010;
int h[N], e[N], ne[N], idx;
int happy[N];
int n;
bool has_father[N];
int f[N][2];
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
void dfs(int u)
{
f[u][1] += happy[u];
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
dfs(j);
f[u][0] += max(f[j][0], f[j][1]);
f[u][1] += f[j][0];
}
}
int main()
{
cin >> n;
memset(h, -1, sizeof h);
for (int i = 1; i <= n; i++)
{
cin >> happy[i];
}
for (int i = 0; i < n - 1; i++)
{
int a, b;
cin >> a >> b;
has_father[a] = true;
add(b, a);
}
int root = 1;
while (has_father[root])
root++;
dfs(root);
cout << max(f[root][0], f[root][1]) << '\n';
return 0;
}