因为杭州B题是个强联通,而且90+队伍会,弱不会,所以来学一学这个专题

从最简单的模板题应用开始


n个人,m条边。(A,B)的边意味着A认为B是好人,这种关系具有传递性,即如果有(A,B)和(B,C)边在图中,那么A认为C是好人

给定n个人和m条边

问:图中有多少个人,他们被所有的人都认为是好人


看到这个题:第一想法好简单啊!暴力枚举啊,n方的算法

对于每个人,检查一遍就好!

看到数据n最大10000,卡的就是这种思路


那么应该怎么做呢?想到的是昨天的沈阳暴力E题:如果出现了很多个点两两都可达,那么在这个问题中其实就是可以先处理成一个点集合(集合中只需要关注这个集合的数目了,还有这个集合的标号,因为会是有向边)

那么就是用到了强连通的理论:先缩点,然后连成一棵树(或者是一棵森林)

如果是一个树的话,那么就是叶子节点的集合中的点数目

如果是一个森林,意味着原图不连通,那么就找不到这样的点,答案是0


另外呢,这个题最好选用的是两次dfs来搞,而不是tarjan缩点

原因是:因为我们最终要判断是不是一棵树

用一次反向的dfs即可判断,用叶子节点作为起点,因为图中全是反向边,如果在dfs之中所有节点都经过,那么说明在原图的反向图中是个连通的

所以意味着,在原图中,任何节点都可以到达叶子节点:也就是说:叶子节点集合中的原图中的所有点,都会被所有的点认为是好人


bin神博客的题解在这:

kuangbin大神


弱的代码是按照《挑战程序设计竞赛》写的:

所以明白了那个反向dfs的意思


#include<iostream>
#include<cstdio>
#include<stdio.h>
#include<cstdlib>
#include<vector>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<cstring>
using namespace std;

const int maxn=10050;
int n,m,u,v;
vector<int> g[maxn];
vector<int> rg[maxn];
vector<int> vs;
bool used[maxn];
int cmp[maxn];

void addedge(int u,int v){
    g[u].push_back(v);
    rg[v].push_back(u);
}

void dfs(int v){
    used[v]=true;
    for(int i=0;i<g[v].size();i++)
        if (!used[g[v][i]]) dfs(g[v][i]);
    vs.push_back(v);
}

void rdfs(int v,int k){
    used[v]=true;
    cmp[v]=k;
    for(int i=0;i<rg[v].size();i++)
        if (!used[rg[v][i]]) rdfs(rg[v][i],k);
}

int scc(){
    memset(used,0,sizeof(used));
    vs.clear();
    for(int v=0;v<n;v++)
        if (!used[v]) dfs(v);
    memset(used,0,sizeof(used));
    int k=0;
    for(int i=vs.size()-1;i>=0;i--)
        if (!used[vs[i]]) rdfs(vs[i],k++);
    return k;
}

int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
        for(int i=1;i<=n;i++){
            g[i].clear();
            rg[i].clear();
        }
        memset(cmp,0,sizeof(cmp));
        while(m--){
            scanf("%d%d",&u,&v);
            addedge(u-1,v-1);
        }
        int num=scc(),ans=0;
        u=0,v=0;
        for(int i=0;i<n;i++)
        if (cmp[i]==num-1){
            u=i;
            ans++;
        }
        memset(used,0,sizeof(used));
        rdfs(u,0);
        for(int i=0;i<n;i++)
        if (!used[i]){
            ans=0;
            break;
        }
        printf("%d\n",ans);
    }
    return 0;
}