import numpy as np
def calculate_correlation_matrix(X, Y=None):
# Your code here
m,p=X.shape
x_mean=np.mean(X,axis=0)
x_centered=X-x_mean
std_x=np.std(x_centered,axis=0,ddof=1)
if Y is None:
y_centered=x_centered
std_y=np.std(y_centered,axis=0,ddof=1)
else:
y_mean=np.mean(Y,axis=0)
y_centered=Y-y_mean
std_y=np.std(y_centered,axis=0,ddof=1)
std_outer=np.outer(std_x,std_y)
cov_matrix=x_centered.T@y_centered/(m-1)
corr_matrix=cov_matrix/std_outer
return corr_matrix
if __name__ == "__main__":
X = np.array(eval(input()))
print(calculate_correlation_matrix(X))