题目描述
给你的一棵树,每个节点有自己的颜色。下面有两种操作。
操作一:把一个节点及其子树全部改成颜色。
操作二:输出一个节点及它子树中一共有几种颜色。题目涉及的颜色种类。
Solution
观察颜色种类就是这个题目的切入点,看到最大不超过种的颜色,就在指引我们去状压这个颜色了。
那么维护数上子节点,这个要联想到树链剖分的思路,把一棵树变成一条链,对这个链操作的话,就会有很多新的方法,比如说线段树。
这个题目就是线段树+状压统计即可,使用标记去记录赋值标记。每次节点都是赋值,到了这个时候就可以看出是和区间赋值的板子一样了。最后上传标记使用或运算在统计有几个二进制一即可出答案。注意问题就变成了,拿到序,把树变成链,在进行区间赋值操作,问区间有几个不同的数题目。
#include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__)) #define rep(i, sta, en) for(int i=sta; i<=en; ++i) typedef long long ll; typedef unsigned long long ull; typedef long double ld; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int MOD = 1e9 + 7; const int INF = 0x3f3f3f3f; const int N = 4e5 + 7; /*前向星部分*/ int head[N], tot1; struct Node { int v, next; }edge[N << 1]; void add(int u, int v) { edge[++tot1].v = v; edge[tot1].next = head[u]; head[u] = tot1; } /*dfs序部分,化树为链*/ int sz[N], dfn[N], dfn_id[N], tot2; void dfs(int u, int fa) { sz[u] = 1; dfn[u] = ++tot2, dfn_id[tot2] = u; for (int i = head[u]; i; i = edge[i].next) { int v = edge[i].v; if (v == fa) continue; dfs(v, u); sz[u] += sz[v]; } } /*线段树部分、状压*/ #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r ll a[N], sum[N << 2], lazy[N << 2]; void push_down(int rt, int l, int r) { if (lazy[rt]) { sum[rt << 1] = lazy[rt << 1] = lazy[rt]; sum[rt << 1 | 1] = lazy[rt << 1 | 1] = lazy[rt]; lazy[rt] = 0; } } void push_up(int rt, int l, int r) { sum[rt] = sum[rt << 1] | sum[rt << 1 | 1]; } void build(int rt, int l, int r) { if (l == r) { sum[rt] = 1ll << a[dfn_id[l]]; lazy[rt] = 0; return; } build(lson); build(rson); push_up(rt, l, r); } void update(int rt, int l, int r, int L, int R, ll z) { if (L <= l and r <= R) { sum[rt] = lazy[rt] = z; return; } push_down(rt, l, r); if (L <= mid) update(lson, L, R, z); if (R > mid) update(rson, L, R, z); push_up(rt, l, r); } ll query(int rt, int l, int r, int L, int R) { if (L <= l and r <= R) return sum[rt]; push_down(rt, l, r); ll res = 0; if (L <= mid) res |= query(lson, L, R); if (R > mid) res |= query(rson, L, R); return res; } int calc(ll x) { int res = 0; for (int i = 1; i <= 60; ++i) if (x & (1ll << i)) ++res; return res; } void solve() { int n = read(), m = read(); for (int i = 1; i <= n; ++i) a[i] = read(); for (int i = 1; i < n; ++i) { int u = read(), v = read(); add(u, v), add(v, u); } dfs(1, -1); build(1, 1, n); while (m--) { int op = read(); if (op & 1) { int u = read(), z = read(); update(1, 1, n, dfn[u], dfn[u] + sz[u] - 1, 1ll << z); } else { int u = read(); ll ans = query(1, 1, n, dfn[u], dfn[u] + sz[u] - 1); int cnt = calc(ans); print(cnt); } } } int main() { //int T = read(); while (T--) solve(); return 0; }