感觉这场题目的难题难度都差不多,不过都是窝做不出的好题就对了

G.智乃与模数

给定,求这个集合中前大的元素和。

赛时因为没时间了,痛失这道数论分块。其实分块数肯定不超过,每个块里面都是等差数列,双二分就完事了。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define PII array<int, 2>

const int inf = 4e18;
const int N = 1e6 + 5;
int t = 1, k, n;
int tot;
int red[N], start[N]; // red记录该块的公差(的相反数),start记录该块最大元素的值

int check(int mid)
{
    int ret = 0;
    for (int i = 1; i <= tot; i++)
    {
        if (start[i] < mid)
            continue;
        ret += 1 + (start[i] - mid) / red[i];
    }
    return ret;
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> k; // 最多分2\sqrt n块,双log二分

    // 前\sqrt n个可以预处理,因为这些块必定都只有一个元素
    int now = 1;
    for (; now * now <= n; now++)
        red[++tot] = n / now, start[tot] = n % now;

    // 处理剩余最多\sqrt n个块
    while (now <= n)
    {
        int L = now, R = n, cur = n / now; // 二分找这个块的最后一个位置
        while (L <= R)
        {
            int mid = L + R >> 1;
            if (n / mid != cur)
                R = mid - 1;
            else
                L = mid + 1;
        }
        red[++tot] = cur, start[tot] = n % now;
        now = R + 1;
    }

    // 开始二分答案(可以完全被接受的最大值)
    int L = 1, R = n / 2;
    while (L <= R)
    {
        int mid = L + R >> 1;
        if (check(mid) > k)
            L = mid + 1;
        else
            R = mid - 1;
    }

    int ans = 0, remain = k;
    for (int i = 1; i <= tot; i++)
    {
        if (start[i] < L)
            continue;

        int add = 1 + (start[i] - L) / red[i]; // 这个块提供的贡献(数量)
        remain -= add;
        ans += start[i] * add - add * (add - 1) / 2 * red[i];
    }
    ans += (L - 1) * remain;
    cout << ans;
    return 0;
}

H.智乃与黑白树

个节点无根树,每个节点都是黑或白色,求将树中每一条边分别割断后,产生的两棵子树的黑白简单路径和(即从黑点出发到白点的所有的简单路径和)。

换根好题,虽然代码烦了一点点。合并两个子树的信息时,要注意需要维护好两种节点的个数和产生的贡献(贡献!=个数,这和上次第二场中的题目很类似)以及对应的子树答案。换根时先当前子树,再将父亲节点过去即可。时间复杂度

注意删除操作和连接操作是完全反过来的,不仅是+变成-,在代码实现上也是倒的。

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define PII array<int, 2>

const int inf = 4e18;
const int N = 1e5 + 5;
int t = 1, n, u, v;
string s;
int tot[N][2], add[N][2]; // 分别记录提供的数量和贡献
int ans[N];               // 计算当前子树的答案
int fa[N];
bool type[N];
vector<PII> g[N];
PII ver[N];
PII res[N]; // 对应的答案

void dfs1(int pos)
{
    tot[pos][type[pos]] = 1;
    for (PII i : g[pos])
    {
        if (i[0] == fa[pos])
            continue;
        fa[i[0]] = pos;
        dfs1(i[0]);

        ans[pos] += ans[i[0]];
        for (int j = 0; j < 2; j++)
            ans[pos] += add[pos][j] * tot[i[0]][j ^ 1] + (add[i[0]][j] + tot[i[0]][j]) * tot[pos][j ^ 1];
        for (int j = 0; j < 2; j++)
            add[pos][j] += add[i[0]][j] + tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            tot[pos][j] += tot[i[0]][j];
    }
}

void dfs2(int pos)
{
    for (PII i : g[pos])
    {
        if (i[0] == fa[pos])
            continue;

        // 删掉对应子树的贡献
        for (int j = 0; j < 2; j++)
            tot[pos][j] -= tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            add[pos][j] -= add[i[0]][j] + tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            ans[pos] -= add[pos][j] * tot[i[0]][j ^ 1] + (add[i[0]][j] + tot[i[0]][j]) * tot[pos][j ^ 1];
        ans[pos] -= ans[i[0]];

        int cnt = i[1];
        res[cnt][0] = (ver[cnt][0] == pos ? ans[pos] : ans[i[0]]);
        res[cnt][1] = (ver[cnt][1] == pos ? ans[pos] : ans[i[0]]);

        // 将其他子树的贡献移动过去
        swap(pos, i[0]);
        ans[pos] += ans[i[0]];
        for (int j = 0; j < 2; j++)
            ans[pos] += add[pos][j] * tot[i[0]][j ^ 1] + (add[i[0]][j] + tot[i[0]][j]) * tot[pos][j ^ 1];
        for (int j = 0; j < 2; j++)
            add[pos][j] += add[i[0]][j] + tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            tot[pos][j] += tot[i[0]][j];
        swap(pos, i[0]);

        dfs2(i[0]);

        // 撤回其他子树的贡献
        swap(pos, i[0]);
        for (int j = 0; j < 2; j++)
            tot[pos][j] -= tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            add[pos][j] -= add[i[0]][j] + tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            ans[pos] -= add[pos][j] * tot[i[0]][j ^ 1] + (add[i[0]][j] + tot[i[0]][j]) * tot[pos][j ^ 1];
        ans[pos] -= ans[i[0]];
        swap(pos, i[0]);

        // 加回这棵子树的贡献
        ans[pos] += ans[i[0]];
        for (int j = 0; j < 2; j++)
            ans[pos] += add[pos][j] * tot[i[0]][j ^ 1] + (add[i[0]][j] + tot[i[0]][j]) * tot[pos][j ^ 1];
        for (int j = 0; j < 2; j++)
            add[pos][j] += add[i[0]][j] + tot[i[0]][j];
        for (int j = 0; j < 2; j++)
            tot[pos][j] += tot[i[0]][j];
    }
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> s;
    s = ' ' + s;
    for (int i = 1; i <= n; i++)
        type[i] = s[i] == 'b';
    for (int i = 1; i < n; i++)
    {
        cin >> u >> v;
        g[u].push_back({v, i}), g[v].push_back({u, i});
        ver[i] = {u, v};
    }

    dfs1(1);
    dfs2(1);

    for (int i = 1; i < n; i++)
        cout << res[i][0] << ' ' << res[i][1] << '\n';

    return 0;
}

I.智乃的兔子跳

找到一个公差不是的等差数列,使其覆盖给定数列中最多的点。公差至少能覆盖个点很容易想到,所以其他的必须超过这个值。 这里随机化还是有点难想到的,随机取两个不同的数,所得等差数列有概率就是正确答案(如果正确答案公差不是的话)。重复个次,失败概率将无限趋近于这题的代码实现也很玄,map竟然过不了QAQ

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define PII array<int, 2>

const int inf = 4e18;
const int N = 1e6 + 5;
int t = 1, n;
int ans, a_1, D, gap;
int arr[N];
PII get_random;

int Rand()
{
    return ((long long)rand() << 15ll | (long long)rand()) % n + 1;
}

void check(int p, int d)
{
    int now = 0;
    for (int i = 1; i <= n; i++)
        if ((arr[i] - arr[p]) % d == 0)
            now++;
    if (now > ans)
        ans = now, a_1 = arr[p] % d, D = d;
}

void Sep(int m, int p)
{
    int now = m;
    for (int i = 2; i * i <= now; i++)
    {
        if (now % i == 0)
        {
            while (now % i == 0)
                now /= i;
            check(p, i);
        }
    }
    if (now != 1)
        check(p, now);
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    srand(time(0));
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> arr[i];
    if (n == 1)
    {
        cout << arr[1] << ' ' << 2;
        return 0;
    }

    ans = 1, a_1 = arr[1], D = 2;

    for (int test = 0; test < 100; test++)
    {
        do
        {
            get_random = {Rand(), Rand()};
            gap = abs(arr[get_random[0]] - arr[get_random[1]]);
        } while (!gap);
        Sep(gap, get_random[0]);
    }

    cout << a_1 << ' ' << D;

    return 0;
}

B.智乃的质数手串

给一个环形串,只有当相邻两个珠子数字和是质数才能取下左侧的那个;特别地,只剩一个的话可以直接取下。求是否可行+方案。

破环成链必然。可以发现:由于删除的是前面那个珠子,因此对后面的珠子是否会被删其实没有任何影响。于是想到用队列处理,又由于环的长度实际只有,因此使用单调队列,及时删掉超出范围的珠子即可。时间复杂度

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define PII array<int, 2>

const int inf = 4e18;
const int N = 2e5 + 5;
int t = 1, n;
int arr[N];
deque<int> deq;
vector<int> out;

// 素数筛板子
int prime[N], tot;
bool notprime[N];
bool remain[N];

void Prime(int range)
{
    for (int i = 2; i <= range; i++)
    {
        if (!notprime[i])
            prime[++tot] = i;
        for (int j = 1; j <= tot && i * prime[j] <= range; j++)
        {
            notprime[i * prime[j]] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
}

void Add(int pos)
{
    if (deq.size() && deq.front() <= pos - n)
        deq.pop_front();                                        // 这个是用不到的
    while (deq.size() && !notprime[arr[deq.back()] + arr[pos]]) // 让后面的把前面挤掉
    {
        out.push_back(deq.back());
        deq.pop_back();
    }
    deq.push_back(pos);
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    Prime(2e5);
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> arr[i];
    for (int i = n + 1; i <= 2 * n; i++)
        arr[i] = arr[i - n];

    for (int i = 1; i <= n - 1; i++)
        Add(i);
    for (int i = n; i <= 2 * n; i++)
    {
        Add(i);
        if (deq.size() == 1)
        {
            cout << "Yes\n";
            for (int j : out)
            {
                if (j <= i - n)
                    continue;
                cout << (j - 1) % n << ' ';
                remain[(j - 1) % n] = 1;
            }
            for (int j = 0; j < n; j++)
                if (!remain[j])
                {
                    cout << j << ' ';
                    break;
                }

            return 0;
        }
    }
    cout << "No\n";
    return 0;
}

J.智乃画二叉树

炒鸡大模拟,没啥好说的,不太想写._.

#include <bits/stdc++.h>
using namespace std;
#define int long long

const int INF = 1 << 30;
const int MAXN = 200005;
const int MAXM = 5005;
int n, ch[MAXN][2], fx[MAXN], fy[MAXN], l2[MAXN], dch[MAXN][2], mp_tree[MAXN];
bool vis[MAXN], is_root[MAXN];
char s[MAXM][MAXM];
//Adapted from authorized solution

int lowbit(int x) {
    return x & -x;
}

void dfs(int root1, int root2) {
    assert(root1!=0&&root2!=0);
    mp_tree[root1] = root2;
    vis[root1] = true;
    for (int i = 0; i <= 1; ++i) {
        if (ch[root2][i] != -1) {
            dfs(dch[root1][i], ch[root2][i]);
        }
    }
}

int cal_deep(int root) {
    int ret = 0;
    for (int i = 0; i <= 1; ++i) {
        if (ch[root][i] != -1) {
            ret = max(ret, cal_deep(ch[root][i]) + 1);
        }
    }
    return ret;
}

void draw_node(int id, int x) {
    sprintf(s[fx[l2[lowbit(id)]]] + fy[id], "%d", x);
    if (x < 10) {
        s[fx[l2[lowbit(id)]]][fy[id] + 1] = ' ';
    }
    s[fx[l2[lowbit(id)]] - 1][fy[id]] = '_';
    s[fx[l2[lowbit(id)]] - 1][fy[id] + 1] = '_';
    s[fx[l2[lowbit(id)]]][fy[id] - 1] = '/';
    s[fx[l2[lowbit(id)]]][fy[id] + 2] = '\\';
    s[fx[l2[lowbit(id)]] + 1][fy[id] - 1] = '\\';
    s[fx[l2[lowbit(id)]] + 1][fy[id]] = '_';
    s[fx[l2[lowbit(id)]] + 1][fy[id] + 1] = '_';
    s[fx[l2[lowbit(id)]] + 1][fy[id] + 2] = '/';
}

void draw_left_line(int id) {
    int x = fx[l2[lowbit(id)]] + 2;
    int y = fy[id] - 1;
    while (s[x][y] == '\0') {
        s[x][y] = '/';
        x++, y--;
    }
}

void draw_right_line(int id) {
    int x = fx[l2[lowbit(id)]] + 2;
    int y = fy[id] + 2;
    while (s[x][y] == '\0') {
        s[x][y] = '\\';
        x++, y++;
    }
}

signed main() {
    fx[1] = fy[1] = l2[1] = 1;
    for (int i = 2; i <= 180; ++i) {
        fx[i] = fx[i - 1] * 2 + 2;
        fy[i] = fy[i - 1] + 3;
        l2[i] = l2[i / 2] + 1;
    }
    for (int i = 1; i <= 180; ++i) {
        fx[i] = 200 - fx[i];
        if (lowbit(i) != 1) {
            dch[i][0] = i - lowbit(i >> 1);
            dch[i][1] = i + lowbit(i >> 1);
        }
    }
    scanf("%lld %*lld", &n);
    for (int i = 1; i <= n; ++i) {
        is_root[i] = true;
    }
    for (int i = 1; i <= n; ++i) {
        scanf("%lld %lld", &ch[i][0], &ch[i][1]);
        is_root[ch[i][0]] = is_root[ch[i][1]] = false;
    }

    int root;
    for (int i = 1; i <= n; ++i) {
        if (is_root[i]) {
            root = i;
        }
    }

    int froot = 1 << cal_deep(root);

    dfs(froot, root);
    for (int i = 1; i < 180; ++i) {
        if (vis[i]) {
            draw_node(i, mp_tree[i]);
        }
    }

    for (int i = 1; i < 180; ++i) {
        if (vis[i] && ch[mp_tree[i]][0] != -1) {
            draw_left_line(i);
        }
        if (vis[i] && ch[mp_tree[i]][1] != -1) {
            draw_right_line(i);
        }
    }

    int lx = INF, rx = -INF, ly = INF, ry = -INF;

    for (int i = 0; i <= 200; ++i) {
        for (int j = 0; j <= 2000; ++j) {
            if (s[i][j]) {
                lx = min(lx, i);
                rx = max(rx, i);
                ly = min(ly, j);
                ry = max(ry, j);
            }
        }
    }
    for (int i = lx - 1; i <= rx + 1; ++i) {
        for (int j = ly - 1; j <= ry + 1; ++j) {
            if (i == lx - 1 || i == rx + 1 || j == ly - 1 || j == ry + 1) {
                printf("*");
            } else {
                printf("%c", s[i][j] ? s[i][j] : ' ');
            }
        }
        printf("\n");
    }
    return 0;
}