'''
解题思路:
动态规划算法,
dp[i][j]定义为:如果dp[i][j]为1,则表示字符串从i到j是回文子串,
如果dp[i][j]为0,则表示字符串从i到j不是回文子串。
1、当i==j时,dp[i][j]==1
2、当j-i<=2时,如s[i]==s[j],dp[i][j]==1
3、其它情况,如s[i]==s[j],当dp[i+1][j-1]==1,则dp[i][j]==1
由于递推公式:
dp[i][j] = dp[i+1][j-1]==1,条件是s[i]==s[j],i要从大的数值,j要从小的数值开始计算
#=============================================================================================
'''
# -*- coding:utf-8 -*-
class Solution:
def getLongestPalindrome(self, A, n):
# write code here
#print(A)
#print(n)
dp = [[0]*n for _ in range(n)]
maxlen = 1
str1 = ''
for i in range(n-1,-1,-1):
for j in range(i,n):
if A[i]==A[j]:
if j-i<=2:
dp[i][j] = 1
else:
dp[i][j] = dp[i+1][j-1]
if dp[i][j]==1 and j-i+1>maxlen:
maxlen = j-i+1
# str1 = A[i:j+1]
#for i in dp:
# print(i)
#print(str1)
return maxlen
A = 'abc1234321ab' # 7
n = len(A)
s = Solution()
print(s.getLongestPalindrome(A,n))