描述
给定数组arr,设长度为n,输出arr的最长递增子序列。(如果有多个答案,请输出其中 按数值(注:区别于按单个字符的ASCII码值)进行比较的 字典序最小的那个)
示例1
输入:
[2,1,5,3,6,4,8,9,7]
复制
返回值:
[1,3,4,8,9]
复制
示例2
输入:
[1,2,8,6,4]
复制
返回值:
[1,2,4]
复制
说明:
其最长递增子序列有3个,(1,2,8)、(1,2,6)、(1,2,4)其中第三个 按数值进行比较的字典序 最小,故答案为(1,2,4)
备注:
n \leq 10^5n≤10
5
1 \leq arr_i \leq 10^91≤arr
i
≤10
9
思路和心得:
1.数据为10的5次方。dp会TLE。只能二分, n * log(n)
2.记录好每个index处,LIS的最大长度
3.从右往左,找恰好达到长度的index,arr[index]放到res数组相应的位置
python3代码
#
# retrun the longest increasing subsequence
# @param arr int整型一维数组 the array
# @return int整型一维数组
#
import bisect
class Solution:
def LIS(self , arr ):
# write code here
n = len(arr)
if not arr:
return []
a = [] #辅助数组
idx_maxLen = [] #以某个index为end的最长LIS长度
for x in arr:
idx = bisect.bisect_left(a, x)
if idx == len(a):
a.append(x)
idx_maxLen.append(len(a))
else:
a[idx] = x
idx_maxLen.append(idx + 1)
maxLen = len(a) #最长LIS的长度
res = [-1 for _ in range(maxLen)]
for i in range(n - 1, -1, -1):
if idx_maxLen[i] == maxLen:
res[maxLen - 1] = arr[i]
maxLen -= 1
return res
c++代码
class Solution
{
public:
/**
* retrun the longest increasing subsequence
* @param arr int整型vector the array
* @return int整型vector
*/
vector<int> LIS(vector<int>& arr)
{
// write code here
int n = arr.size();
if (n == 0)
return vector<int>{};
vector<int> a; //辅助数组
vector<int> idx_maxLen; //以index为end的最长LIS的长度
for (int x: arr)
{
int idx = lower_bound(a.begin(), a.end(), x) - a.begin();
if (idx == a.size())
{
a.push_back(x);
idx_maxLen.push_back((int)a.size());
}
else
{
a[idx] = x;
idx_maxLen.push_back(idx + 1);
}
}
int maxLen = (int)a.size();
vector<int> res(maxLen, -1);
for (int i = n - 1; i > -1; i --)
{
if (idx_maxLen[i] == maxLen)
{
res[maxLen - 1] = arr[i];
maxLen --;
}
}
return res;
}
};java代码
import java.util.*;
public class Solution
{
/**
* retrun the longest increasing subsequence
* @param arr int整型一维数组 the array
* @return int整型一维数组
*/
public int[] LIS (int[] arr)
{
// write code here
int n = arr.length;
if (n == 0)
return new int [] {};
List<Integer> a = new ArrayList<>();
List<Integer> idx_maxLen = new ArrayList<>();
for (int x: arr)
{
int idx = binary_search_left(a, x);
if (idx == a.size())
{
a.add(x);
idx_maxLen.add(a.size());
}
else
{
a.set(idx, x);
idx_maxLen.add(idx + 1);
}
}
int maxLen = a.size();
int res [] = new int [maxLen];
for (int i = n - 1; i > -1; i --)
{
if (idx_maxLen.get(i) == maxLen)
{
res[maxLen - 1] = arr[i];
maxLen --;
}
}
return res;
}
public int binary_search_left(List<Integer> nums, int target)
{
int n = nums.size();
if (n == 0)
return 0;
int l = 0;
int r = n;
while (l < r)
{
int mid = (l + r) / 2;
if (nums.get(mid) >= target)
r = mid;
else
l = mid + 1;
}
return l;
}
}
京公网安备 11010502036488号