[SCOI2009]生日快乐
题目地址:
基本思路:
由于,所以我们考虑直接暴力;
我们用double dfs(double x,double y,int k)
表示将长为,宽为的矩阵切成块的最小长宽比;
对于每次切,这时的每块蛋糕的面积一定是确定的,
而我们一定是平行切,也就是说我们切长的时候切出来的一定要是的倍数,切宽的时候一定要是的倍数,
所以我们枚举每种切法,然后将切出来的两个剩余部分继续就可以了。
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define ll long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 1e9 inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } double dfs(double a,double b,int k) { if (a < b) swap(a, b); if (k == 1) return a / b; double res = INF; //长宽比取min; for (int i = 1; i <= k / 2; i++) { //枚举切法; double na = a * (double) i / (double) k, nb = b * (double) i / (double) k; //两部分的结果要取max,这种切法的结果取min; res = min(res, max(dfs(na, b, i), dfs(a - na, b, k - i))); // 对长切后将两个剩余部分继续切; res = min(res, max(dfs(a, nb, i), dfs(a, b - nb, k - i)));// 对宽切后将两个剩余部分继续切; } return res; } int x,y,n; signed main() { scanf("%d%d%d", &x, &y, &n); double ans = dfs((double) x, (double) y, n); printf("%.6lf", ans); return 0; }