每日三百行代码 第八天
复杂度分析
1、大 O 时间复杂度表示法
大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
第 2、3 行代码分别需要 1 个 unit_time 的执行时间,第 4、5 行都运行了 n 遍,所以需要 2n*unit_time 的执行时间,所以这段代码总的执行时间就是 (2n+2)*unit_time。可以看出来,所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
2、时间复杂度分析
- 只关注循环执行次数最多的一段代码,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。
- 加法法则:总复杂度等于量级最大的那段代码的复杂度,总的时间复杂度就等于量级最大的那段代码的时间复杂度。
- 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积,假设 T1(n) = O(n),T2(n) = O(n2),则 T1(n) * T2(n) = O(n3)。
几种常见时间复杂度实例分析
1)O(1):
一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
int i = 8;
int j = 6;
int sum = i + j;
2)O(logn)、O(nlogn):
对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。
i=1;
while (i <= n) {
i = i * 2;
}
//从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。
//实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O(logn)。
//log3n 就等于 log32 * log2n,所以 O(log3n) = O(C * log2n),其中 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。
3)O(m+n)、O(m*n):
int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}
//m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。
3、空间复杂度分析
时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。
void print(int n) {
int i = 0;
int[] a = new int[n];
for (i; i <n; ++i) {
a[i] = i * i;
}
for (i = n-1; i >= 0; --i) {
print out a[i]
}
}
第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
4、
最好情况时间复杂度(best case time complexity)
最坏情况时间复杂度(worst case time complexity)
平均情况时间复杂度(average case time complexity)
均摊时间复杂度(amortized time complexity)
1)最好、最坏情况时间复杂度
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) pos = i;
}
return pos;
}
这段代码要实现的功能是,在一个无序的数组(array)中,查找变量 x 出现的位置。如果没有找到,就返回 -1。这段代码的复杂度是 O(n),其中,n 代表数组的长度。
优化后的代码:
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}
因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。
最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就像我们刚刚讲到的,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。
最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。就像刚举的那个例子,如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。
2)平均情况时间复杂度
要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值
我们知道,要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。
那平均时间复杂度的计算过程就变成了这样:
1*(1/2n)+2*(1/2n)+…+n*(1/2n)+n*(1/2)=(3n+1)/4
这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。
3)均摊时间复杂度
// array表示一个长度为n的数组
// 代码中的array.length就等于n
int[] array = new int[n];
int count = 0;
void insert(int val) {
if (count == array.length) {
int sum = 0;
for (int i = 0; i < array.length; ++i) {
sum = sum + array[i];
}
array[0] = sum;
count = 1;
// count=1;count被重置为1。
//之后再插入的数据就会覆盖掉原来的数据。
//就相当于将原数组清空了。并不需要显示的去清空
}
array[count] = val;
++count;
}
这段代码实现了一个往数组中插入数据的功能。
当数组满了之后,也就是代码中的 count == array.length 时,
我们用 for 循环遍历数组求和,并清空数组,
将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。
但如果数组一开始就有空闲空间,则直接将数据插入数组。
首先,find() 函数在极端情况下,复杂度才为 O(1)。但 insert() 在大部分情况下,时间复杂度都为 O(1)。只有个别情况下,复杂度才比较高,为 O(n)。这是 insert()第一个区别于 find() 的地方。
我们再来看第二个不同的地方。对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,出现的频率是非常有规律的,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。
针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度。
对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。
5、数组
数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
线性表(Linear List)。顾名思义,线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。其实除了数组,链表、队列、栈等也是线性表结构。
非线性表,比如二叉树、堆、图等。之所以叫非线性,是因为,在非线性表中,数据之间并不是简单的前后关系。是连续的内存空间和相同类型的数据。正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。
我们拿一个长度为 10 的 int 类型的数组 int[] a = new int[10]来举例。计算机给数组 a[10],分配了一块连续内存空间 1000~1039,其中,内存块的首地址为 base_address = 1000。计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:
a[i]_address = base_address + i * data_type_size
其中 data_type_size 表示数组中每个元素的大小。我们举的这个例子里,数组中存储的是 int 类型数据,所以 data_type_size 就为 4 个字节。
数组是适合查找操作,但是查找的时间复杂度并不为 O(1)。即便是排好序的数组,你用二分查找,时间复杂度也是 O(logn)。所以,数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)。
低效的“插入”和“删除”
插入操作:假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为 O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是 O(n)。
如果数组中的数据是有序的,我们在某个位置插入一个新的元素时,就必须按照刚才的方法搬移 k 之后的数据。但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数据插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。利用这种处理技巧,在特定场景下,在第 k 个位置插入一个元素的时间复杂度就会降为 O(1)。
删除操作:跟插入数据类似,如果我们要删除第 k 个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。和插入类似,如果删除数组末尾的数据,则最好情况时间复杂度为 O(1);如果删除开头的数据,则最坏情况时间复杂度为 O(n);平均情况时间复杂度也为 O(n)。
数组 a[10]中存储了 8 个元素:a,b,c,d,e,f,g,h。现在,我们要依次删除 a,b,c 三个元素。为了避免 d,e,f,g,h 这几个数据会被搬移三次,我们可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。//如果你了解 JVM,你会发现,这不就是 JVM 标记清除垃圾回收算法的核心思想吗?
警惕数组的访问越界问题
int main(int argc, char* argv[]){
int i = 0;
int arr[3] = {
0};
for(; i<=3; i++){
arr[i] = 0;
printf("hello world\n");
}
return 0;
}
数组大小为 3,a[0],a[1],a[2],而我们的代码因为书写错误,导致 for 循环的结束条件错写为了 i<=3 而非 i<3,所以当 i=3 时,数组 a[3]访问越界。
//死循环的问题跟编译器分配内存和字节对齐有关 数组3个元素 加上一个变量a 。4个整数刚好能满足8字节对齐 所以i的地址恰好跟着a2后面 导致死循环。。如果数组本身有4个元素 则这里不会出现死循环。。因为编译器64位操作系统下 默认会进行8字节对齐 变量i的地址就不紧跟着数组后面了。
在 C 语言中,只要不是访问受限的内存,所有的内存空间都是可以自由访问的。根据我们前面讲的数组寻址公式,a[3]也会被定位到某块不属于数组的内存地址上,而这个地址正好是存储变量 i 的内存地址,那么 a[3]=0 就相当于 i=0,所以就会导致代码无限循环。
数组越界在 C 语言中是一种未决行为,并没有规定数组访问越界时编译器应该如何处理。因为,访问数组的本质就是访问一段连续内存,只要数组通过偏移计算得到的内存地址是可用的,那么程序就可能不会报任何错误。
容器能否完全替代数组?
针对数组类型,很多语言都提供了容器类,比如 Java 中的 ArrayList、C++ STL 中的 vector。
ArrayList 最大的优势就是可以将很多数组操作的细节封装起来。比如前面提到的数组插入、删除数据时需要搬移其他数据等。另外,它还有一个优势,就是支持动态扩容。
数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果我们申请了大小为 10 的数组,当第 11 个数据需要存储到数组中时,我们就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。
如果使用 ArrayList,我们就完全不需要关心底层的扩容逻辑,ArrayList 已经帮我们实现好了。每次存储空间不够的时候,它都会将空间自动扩容为 1.5 倍大小。不过,这里需要注意一点,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建 ArrayList 的时候事先指定数据大小。
比如我们要从数据库中取出 10000 条数据放入 ArrayList。我们看下面这几行代码,你会发现,相比之下,事先指定数据大小可以省掉很多次内存申请和数据搬移操作。
ArrayList<User> users = new ArrayList(10000);
for (int i = 0; i < 10000; ++i) {
users.add(xxx);
}
1.Java ArrayList 无法存储基本类型,比如 int、long,需要封装为 Integer、Long 类,而 Autoboxing、Unboxing 则有一定的性能消耗,所以如果特别关注性能,或者希望使用基本类型,就可以选用数组。
2. 如果数据大小事先已知,并且对数据的操作非常简单,用不到 ArrayList 提供的大部分方法,也可以直接使用数组。
3.当要表示多维数组时,用数组往往会更加直观。比如 Object[][] array;而用容器的话则需要这样定义:ArrayList > array。
为什么大多数编程语言中,数组要从 0 开始编号,而不是从 1 开始呢?
从数组存储的内存模型上来看,“下标”最确切的定义应该是“偏移(offset)”。前面也讲到,如果用 a 来表示数组的首地址,a[0]就是偏移为 0 的位置,也就是首地址,a[k]就表示偏移 k 个 type_size 的位置,所以计算 a[k]的内存地址只需要用这个公式:
a[k]_address = base_address + k * type_size
但是,如果数组从 1 开始计数,那我们计算数组元素 a[k]的内存地址就会变为:
a[k]_address = base_address + (k-1)*type_size
从 1 开始编号,每次随机访问数组元素都多了一次减法运算,对于 CPU 来说,就是多了一次减法指令。
数组作为非常基础的数据结构,通过下标随机访问数组元素又是其非常基础的编程操作,效率的优化就要尽可能做到极致。所以为了减少一次减法操作,数组选择了从 0 开始编号,而不是从 1 开始。
JVM标记清除算法:
大多数主流虚拟机采用可达性分析算法来判断对象是否存活,在标记阶段,会遍历所有 GC ROOTS,将所有 GC ROOTS 可达的对象标记为存活。只有当标记工作完成后,清理工作才会开始。
不足:
1.效率问题。标记和清理效率都不高,但是当知道只有少量垃圾产生时会很高效。
2.空间问题。会产生不连续的内存空间碎片。
数组的内存寻址公式
一维数组:
a[i]_address=base_address+i*type_size
二维数组:二维数组假设是m*n
a[i][j]_address=base_address + (i*n+j)*type_size
三维数组:三维数组假设是mnq,
a[i][j][k]_address=base_address + (i*n*q + j*q + k)*type_size