后缀表达式与求值
# In[1]:
class Node(object):
pass
class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right
class UnaryOperator(Node):
def __init__(self, operator):
self.operator = operator
class Add(BinaryOperator):
pass
class Sub(BinaryOperator):
pass
class Mul(BinaryOperator):
pass
class Div(BinaryOperator):
pass
class Neg(UnaryOperator):
pass
class Number(Node):
def __init__(self, value):
self.value = value
class NodeVisitor(object):
def visit(self, node):
method = getattr(self,'visit_' + type(node).__name__, None)
if method is None:
method = self.genetic_visit
return method(node)
def genetic_visit(self, node):
raise RuntimeError("No {} method".format('visit_'+type(node).__name__))
class Evaluator(NodeVisitor):
def visit_Number(self, node):
return node.value
def visit_Add(self, node):
return self.visit(node.left) + self.visit(node.right)
def visit_Sub(self, node):
return self.visit(node.left) - self.visit(node.right)
def visit_Mul(self, node):
return self.visit(node.left) * self.visit(node.right)
def visit_Div(self, node):
return self.visit(node.left) / self.visit(node.right)
def visit_Neg(self, node):
return -self.visit(node)
# Out[1]:
evaluate the expression of 1 + 2 * (3 - 4) / 5
# In[2]:
t1 = Sub(Number(3) , Number(4))
# Out[2]:
# In[3]:
t2 = Mul(Number(2), t1)
# Out[3]:
# In[4]:
t3 = Div(t2, Number(5))
# Out[4]:
# In[5]:
t4 = Add(Number(1), t3)
# Out[5]:
# In[6]:
evaluator = Evaluator()
# Out[6]:
# In[7]:
evaluator.visit(t4)
# Out[7]: 0.6
Number类相当于递归中的BaseCase, 这样递归不会是无尽地递归下去。
利用这一特点还可以写出求值过程中的后缀表达式。
implement the postfix expression operation
# In[8]:
class PostfixOperation(NodeVisitor):
def generate_instruction(self, node):
self.instruction = []
self.visit(node)
return self.instruction
def visit_Number(self, node):
self.instruction.append(( 'Push', node.value))
def visit_Add(self, node):
self.binary_op(node)
self.instruction.append(('Add',))
def binary_op(self, node):
self.visit(node.left)
self.visit(node.right)
def visit_Sub(self, node):
self.binary_op(node)
self.instruction.append(('Sub',))
def visit_Mul(self, node):
self.binary_op(node)
self.instruction.append(('Mul',))
def visit_Div(self, node):
self.binary_op(node)
self.instruction.append(('Div',))
def unary_op(self, node):
self.visit(node)
def Neg(self, node):
self.unary_op(node)
self.instruction.append(('Neg',))
# Out[8]:
# In[9]:
postfix_op = PostfixOperation()
# Out[9]:
# In[10]:
postfix_op.generate_instruction(t4)
# Out[10]: [(‘Push’, 1),
(‘Push’, 2),
(‘Push’, 3),
(‘Push’, 4),
(‘Sub’,),
(‘Mul’,),
(‘Push’, 5),
(‘Div’,),
(‘Add’,)]
可是,递归并不是python擅长的,印象中,最适合递归的是函数式编程语言scala,clojure等等。
所以python提供了sys.getcursionlimit(),sys.setrecursionlimi() 两个函数。
大家都知道,一切递归可以改为循环语句执行。
而对于python,对递归的最好的修改是把递归改为流控制(stream control),具体而言就是python的生成器,当然这也是需要循环的。
# In[11]:
import types
class Node(object):
pass
class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right
class UnaryOperator(Node):
def __init__(self, operator):
self.operator = operator
class Add(BinaryOperator):
pass
class Sub(BinaryOperator):
pass
class Mul(BinaryOperator):
pass
class Div(BinaryOperator):
pass
class Neg(UnaryOperator):
pass
class Number(Node):
def __init__(self, value):
self.value = value
class NodeVisitor(object):
def visit(self, node):
last_result = None
stack = [node]
while stack:
try:
last = stack[-1]
if isinstance(last, types.GeneratorType):
stack.append(last.send(last_result))
last_result = None
elif isinstance(last, Node):
stack.append(self._visit(stack.pop()))
else:
last_result = stack.pop()
except StopIteration:
stack.pop()
return last_result
def _visit(self, node):
method = getattr(self,'visit_' + type(node).__name__, None)
if method is None:
method = self.genetic_visit
return method(node)
def genetic_visit(self, node):
raise RuntimeError("No {} method".format('visit_'+type(node).__name__))
class Evaluator(NodeVisitor):
def visit_Number(self, node):
return node.value
def visit_Add(self, node):
lft = yield node.left
rht = yield node.right
yield lft + rht
def visit_Sub(self, node):
yield (yield node.left) - (yield node.right)
def visit_Mul(self, node):
yield (yield node.left) * (yield node.right)
def visit_Div(self, node):
yield (yield node.left) / (yield node.right)
def visit_Neg(self, node):
yield -(yield node.operator)
# Out[11]:
# In[12]:
t1 = Sub(Number(3) , Number(4))
t2 = Mul(Number(2), t1)
t3 = Div(t2, Number(5))
t4 = Add(Number(1), t3)
# Out[12]:
# In[13]:
e = Evaluator()
# Out[13]:
# In[14]:
e.visit(t4)
# Out[14]: 0.6