题意

求这个东西:

\[\prod_{i=1}^N\prod_{j=1}^N\frac{{\rm{lcm}}(i,j)}{{\rm{gcd}}(i,j)} \ ({\rm{mod}} \ 104857601) \]

题解

根据

\[{\rm{lcm}}(i,j)=\frac{i \times j}{{\rm{gcd}}(i,j)} \]

化简式子:

\[\begin{aligned} \text{Ans}&=\prod_{i=1}^N\prod_{j=1}^N\frac{i\times j}{{\rm{gcd}}^2(i,j)}\\ &=\frac{\prod_{i=1}^N\prod_{j=1}^Nij}{\prod_{i=1}^N\prod_{j=1}^N{\rm{gcd}}^2(i,j)} \end{aligned} \]

先看位于分子的式子:

\[\begin{aligned} \prod_{i=1}^N\prod_{j=1}^Nij&=\prod_{i=1}^Ni^N (N!)\\ &=(N!)^N(N!)^N\\ &=(N!)^{2N} \end{aligned} \]

快速幂求即可。

然后是分母的式子:

先不考虑 \({\rm{gcd}}(i,j)\) 的次数。枚举 \({\rm{gcd}}(i,j)\) ,若有数对 \(i,j\) 满足 \({\rm{gcd}}(i,j)=d\) ,那么 \(d\) 对答案会产生贡献。有:

\[\prod_{i=1}^N\prod_{j=1}^N{\rm{gcd}}(i,j)=\prod_{d=1}^Nd^{f(d)} \]
\[\begin{aligned} f(d)&=\sum_{i=1}^N\sum_{j=1}^N[{\rm{gcd}}(i,j)=d]\\ &=\sum_{i=1}^{\lfloor\frac{N}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{N}{d}\rfloor}\sum_{k|i,k|j}\mu(k)\\ &=\sum_{k=1}^{\lfloor\frac{N}{d}\rfloor}\mu(k)\lfloor\frac{N}{kd}\rfloor^2 \end{aligned} \]

枚举 \(d\) ,整除分块求 \(f(d)\) 即可。


\(\text{Code}:\)

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define maxn 1000005
#define Rint register int
#define INF 0x3f3f3f3f
using namespace std;
typedef long long lxl;
const lxl mod=104857601;

template <typename T>
inline T read()
{
	T x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}

int prime[maxn],cnt;
bool flag[maxn];
int mu[maxn];

inline void sieve()
{
	mu[1]=1;
	for(int i=2;i<maxn;++i)
	{
		if(!flag[i]) prime[++cnt]=i,mu[i]=-1;
		for(int j=1;j<=cnt&&i*prime[j]<maxn;++j)
		{
			flag[i*prime[j]]=true;
			if(!(i%prime[j])) break;
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(int i=1;i<maxn;++i)
		mu[i]+=mu[i-1];
}

inline lxl fmi(lxl a,lxl b)
{
	lxl ans=1;
	a%=mod;
	while(b>0)
	{
		if(b&1) ans=(ans*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return ans;
}

inline lxl calcu(lxl N)
{
	lxl res=0;
	for(lxl l=1,r=0;l<=N;l=r+1)
	{
		r=N/(N/l);
		res+=(mu[r]-mu[l-1])*(N/l)*(N/l);
	}
	return res;
}

inline lxl solve(int N)
{
	lxl res=1;
	for(lxl i=1;i<=N;++i) res=(res*i)%mod;
	res=fmi(res,2*N);
	lxl flr=1;
	for(lxl d=1;d<=N;++d)
		flr=flr*fmi(d,calcu(N/d))%mod;
	flr=fmi(flr*flr%mod,mod-2);
	return res*flr%mod;
}

int main()
{
	// freopen("P5221.in","r",stdin);
	sieve();
	int N=read<int >();
	printf("%lld\n",solve(N));
	return 0;
}