结构型模式

前面创建型模式介绍了创建对象的一些设计模式,这节介绍的结构型模式旨在通过改变代码结构来达到解耦的目的,使得我们的代码容易维护和扩展。

代理模式

第一个要介绍的代理模式是最常使用的模式之一了,用一个代理来隐藏具体实现类的实现细节,通常还用于在真实的实现的前后添加一部分逻辑。

既然说是代理,那就要对客户端隐藏真实实现,由代理来负责客户端的所有请求。当然,代理只是个代理,它不会完成实际的业务逻辑,而是一层皮而已,但是对于客户端来说,它必须表现得就是客户端需要的真实实现。

理解代理这个词,这个模式其实就简单了。

public interface FoodService {
    Food makeChicken();
    Food makeNoodle();
}

public class FoodServiceImpl implements FoodService {
    public Food makeChicken() {
          Food f = new Chicken()
        f.setChicken("1kg");
          f.setSpicy("1g");
          f.setSalt("3g");
        return f;
    }
    public Food makeNoodle() {
        Food f = new Noodle();
        f.setNoodle("500g");
        f.setSalt("5g");
        return f;
    }
}

// 代理要表现得“就像是”真实实现类,所以需要实现 FoodService
public class FoodServiceProxy implements FoodService {

    // 内部一定要有一个真实的实现类,当然也可以通过构造方法注入
    private FoodService foodService = new FoodServiceImpl();

    public Food makeChicken() {
        System.out.println("我们马上要开始制作鸡肉了");

        // 如果我们定义这句为核心代码的话,那么,核心代码是真实实现类做的,
        // 代理只是在核心代码前后做些“无足轻重”的事情
        Food food = foodService.makeChicken();

        System.out.println("鸡肉制作完成啦,加点胡椒粉"); // 增强
          food.addCondiment("pepper");

        return food;
    }
    public Food makeNoodle() {
        System.out.println("准备制作拉面~");
        Food food = foodService.makeNoodle();
        System.out.println("制作完成啦")
        return food;
    }
}

客户端调用,注意,我们要用代理来实例化接口:

// 这里用代理类来实例化
FoodService foodService = new FoodServiceProxy();
foodService.makeChicken();

我们发现没有,代理模式说白了就是做 “方法包装” 或做 “方法增强”。在面向切面编程中,算了还是不要吹捧这个名词了,在 AOP 中,其实就是动态代理的过程。比如 Spring 中,我们自己不定义代理类,但是 Spring 会帮我们动态来定义代理,然后把我们定义在 @Before、@After、@Around 中的代码逻辑动态添加到代理中。

说到动态代理,又可以展开说 …… Spring 中实现动态代理有两种,一种是如果我们的类定义了接口,如 UserService 接口和 UserServiceImpl 实现,那么采用 JDK 的动态代理,感兴趣的读者可以去看看 java.lang.reflect.Proxy 类的源码;另一种是我们自己没有定义接口的,Spring 会采用 CGLIB 进行动态代理,它是一个 jar 包,性能还不错。

适配器模式

说完代理模式,说适配器模式,是因为它们很相似,这里可以做个比较。

适配器模式做的就是,有一个接口需要实现,但是我们现成的对象都不满足,需要加一层适配器来进行适配。

适配器模式总体来说分三种:默认适配器模式、对象适配器模式、类适配器模式。先不急着分清楚这几个,先看看例子再说。

默认适配器模式

首先,我们先看看最简单的适配器模式默认适配器模式(Default Adapter)是怎么样的。

我们用 Appache commons-io 包中的 FileAlterationListener 做例子,此接口定义了很多的方法,用于对文件或文件夹进行监控,一旦发生了对应的操作,就会触发相应的方法。

public interface FileAlterationListener {
    void onStart(final FileAlterationObserver observer);
    void onDirectoryCreate(final File directory);
    void onDirectoryChange(final File directory);
    void onDirectoryDelete(final File directory);
    void onFileCreate(final File file);
    void onFileChange(final File file);
    void onFileDelete(final File file);
    void onStop(final FileAlterationObserver observer);
}

此接口的一大问题是抽象方法太多了,如果我们要用这个接口,意味着我们要实现每一个抽象方法,如果我们只是想要监控文件夹中的文件创建文件删除事件,可是我们还是不得不实现所有的方法,很明显,这不是我们想要的。

所以,我们需要下面的一个适配器,它用于实现上面的接口,但是所有的方法都是空方法,这样,我们就可以转而定义自己的类来继承下面这个类即可。

public class FileAlterationListenerAdaptor implements FileAlterationListener {

    public void onStart(final FileAlterationObserver observer) {
    }

    public void onDirectoryCreate(final File directory) {
    }

    public void onDirectoryChange(final File directory) {
    }

    public void onDirectoryDelete(final File directory) {
    }

    public void onFileCreate(final File file) {
    }

    public void onFileChange(final File file) {
    }

    public void onFileDelete(final File file) {
    }

    public void onStop(final FileAlterationObserver observer) {
    }
}

比如我们可以定义以下类,我们仅仅需要实现我们想实现的方法就可以了:

public class FileMonitor extends FileAlterationListenerAdaptor {
    public void onFileCreate(final File file) {
        // 文件创建
        doSomething();
    }

    public void onFileDelete(final File file) {
        // 文件删除
        doSomething();
    }
}

当然,上面说的只是适配器模式的其中一种,也是最简单的一种,无需多言。下面,再介绍“正统的”适配器模式。

对象适配器模式

来看一个《Head First 设计模式》中的一个例子,我稍微修改了一下,看看怎么将鸡适配成鸭,这样鸡也能当鸭来用。因为,现在鸭这个接口,我们没有合适的实现类可以用,所以需要适配器。

public interface Duck {
    public void quack(); // 鸭的呱呱叫
      public void fly(); // 飞
}

public interface Cock {
    public void gobble(); // 鸡的咕咕叫
      public void fly(); // 飞
}

public class WildCock implements Cock {
    public void gobble() {
        System.out.println("咕咕叫");
    }
      public void fly() {
        System.out.println("鸡也会飞哦");
    }
}

鸭接口有 fly() 和 quare() 两个方法,鸡 Cock 如果要冒充鸭,fly() 方法是现成的,但是鸡不会鸭的呱呱叫,没有 quack() 方法。这个时候就需要适配了:

// 毫无疑问,首先,这个适配器肯定需要 implements Duck,这样才能当做鸭来用
public class CockAdapter implements Duck {

    Cock cock;
    // 构造方法中需要一个鸡的实例,此类就是将这只鸡适配成鸭来用
      public CockAdapter(Cock cock) {
        this.cock = cock;
    }

    // 实现鸭的呱呱叫方法
      @Override
      public void quack() {
        // 内部其实是一只鸡的咕咕叫
        cock.gobble();
    }

      @Override
      public void fly() {
        cock.fly();
    }
}

客户端调用很简单了:

public static void main(String[] args) {
    // 有一只野鸡
      Cock wildCock = new WildCock();
      // 成功将野鸡适配成鸭
      Duck duck = new CockAdapter(wildCock);
      ...
}

到这里,大家也就知道了适配器模式是怎么回事了。无非是我们需要一只鸭,但是我们只有一只鸡,这个时候就需要定义一个适配器,由这个适配器来充当鸭,但是适配器里面的方法还是由鸡来实现的。

我们用一个图来简单说明下:

上图应该还是很容易理解的,我就不做更多的解释了。下面,我们看看类适配模式怎么样的。

类适配器模式

废话少说,直接上图:

看到这个图,大家应该很容易理解的吧,通过继承的方法,适配器自动获得了所需要的大部分方法。这个时候,客户端使用更加简单,直接 Target t = new SomeAdapter(); 就可以了。

适配器模式总结

  1. 类适配和对象适配的异同

    一个采用继承,一个采用组合;

    类适配属于静态实现,对象适配属于组合的动态实现,对象适配需要多实例化一个对象。

    总体来说,对象适配用得比较多。

  2. 适配器模式和代理模式的异同

    比较这两种模式,其实是比较对象适配器模式和代理模式,在代码结构上,它们很相似,都需要一个具体的实现类的实例。但是它们的目的不一样,代理模式做的是增强原方法的活;适配器做的是适配的活,为的是提供“把鸡包装成鸭,然后当做鸭来使用”,而鸡和鸭它们之间原本没有继承关系。

桥梁模式

理解桥梁模式,其实就是理解代码抽象和解耦。

我们首先需要一个桥梁,它是一个接口,定义提供的接口方法。

public interface DrawAPI {
   public void draw(int radius, int x, int y);
}

然后是一系列实现类:

public class RedPen implements DrawAPI {
   @Override
   public void draw(int radius, int x, int y) {
      System.out.println("用红色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
   }
}
public class GreenPen implements DrawAPI {
   @Override
   public void draw(int radius, int x, int y) {
      System.out.println("用绿色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
   }
}
public class BluePen implements DrawAPI {
   @Override
   public void draw(int radius, int x, int y) {
      System.out.println("用蓝色笔画图,radius:" + radius + ", x:" + x + ", y:" + y);
   }
}

定义一个抽象类,此类的实现类都需要使用 DrawAPI:

public abstract class Shape {
   protected DrawAPI drawAPI;

   protected Shape(DrawAPI drawAPI){
      this.drawAPI = drawAPI;
   }
   public abstract void draw();    
}

定义抽象类的子类:

// 圆形
public class Circle extends Shape {
   private int radius;

   public Circle(int radius, DrawAPI drawAPI) {
      super(drawAPI);
      this.radius = radius;
   }

   public void draw() {
      drawAPI.draw(radius, 0, 0);
   }
}
// 长方形
public class Rectangle extends Shape {
    private int x;
      private int y;

      public Rectangle(int x, int y, DrawAPI drawAPI) {
        super(drawAPI);
          this.x = x;
          this.y = y;
    }
      public void draw() {
      drawAPI.draw(0, x, y);
   }
}

最后,我们来看客户端演示:

public static void main(String[] args) {
    Shape greenCircle = new Circle(10, new GreenPen());
      Shape redRectangle = new Rectangle(4, 8, new RedPen());

      greenCircle.draw();
      redRectangle.draw();
}

可能大家看上面一步步还不是特别清晰,我把所有的东西整合到一张图上:

这回大家应该就知道抽象在哪里,怎么解耦了吧。桥梁模式的优点也是显而易见的,就是非常容易进行扩展。

本节引用了这里的例子,并对其进行了修改。

装饰模式

要把装饰模式说清楚明白,不是件容易的事情。也许读者知道 Java IO 中的几个类是典型的装饰模式的应用,但是读者不一定清楚其中的关系,也许看完就忘了,希望看完这节后,读者可以对其有更深的感悟。

首先,我们先看一个简单的图,看这个图的时候,了解下层次结构就可以了:

我们来说说装饰模式的出发点,从图中可以看到,接口 Component 其实已经有了 ConcreteComponentA 和 ConcreteComponentB 两个实现类了,但是,如果我们要增强这两个实现类的话,我们就可以采用装饰模式,用具体的装饰器来装饰实现类,以达到增强的目的。

从名字来简单解释下装饰器。既然说是装饰,那么往往就是添加小功能这种,而且,我们要满足可以添加多个小功能。最简单的,代理模式就可以实现功能的增强,但是代理不容易实现多个功能的增强,当然你可以说用代理包装代理的方式,但是那样的话代码就复杂了。

首先明白一些简单的概念,从图中我们看到,所有的具体装饰者们 ConcreteDecorator 都可以作为 Component 来使用,因为它们都实现了 Component 中的所有接口。它们和 Component 实现类 ConcreteComponent 的区别是,它们只是装饰者,起装饰作用,也就是即使它们看上去牛逼轰轰,但是它们都只是在具体的实现中加了层皮来装饰而已。

注意这段话中混杂在各个名词中的 Component 和 Decorator,别搞混了。

下面来看看一个例子,先把装饰模式弄清楚,然后再介绍下 java io 中的装饰模式的应用。

最近大街上流行起来了“快乐柠檬”,我们把快乐柠檬的饮料分为三类:红茶、绿茶、咖啡,在这三大类的基础上,又增加了许多的口味,什么金桔柠檬红茶、金桔柠檬珍珠绿茶、芒果红茶、芒果绿茶、芒果珍珠红茶、烤珍珠红茶、烤珍珠芒果绿茶、椰香胚芽咖啡、焦糖可可咖啡等等,每家店都有很长的菜单,但是仔细看下,其实原料也没几样,但是可以搭配出很多组合,如果顾客需要,很多没出现在菜单中的饮料他们也是可以做的。

在这个例子中,红茶、绿茶、咖啡是最基础的饮料,其他的像金桔柠檬、芒果、珍珠、椰果、焦糖等都属于装饰用的。当然,在开发中,我们确实可以像门店一样,开发这些类:LemonBlackTea、LemonGreenTea、MangoBlackTea、MangoLemonGreenTea......但是,很快我们就发现,这样子干肯定是不行的,这会导致我们需要组合出所有的可能,而且如果客人需要在红茶中加双份柠檬怎么办?三份柠檬怎么办?万一有个变态要四份柠檬,所以这种做法是给自己找加班的。

不说废话了,上代码。

首先,定义饮料抽象基类:

public abstract class Beverage {
      // 返回描述
      public abstract String getDescription();
      // 返回价格
      public abstract double cost();
}

然后是三个基础饮料实现类,红茶、绿茶和咖啡:

public class BlackTea extends Beverage {
      public String getDescription() {
        return "红茶";
    }
      public double cost() {
        return 10;
    }
}
public class GreenTea extends Beverage {
    public String getDescription() {
        return "绿茶";
    }
      public double cost() {
        return 11;
    }
}
...// 咖啡省略

定义调料,也就是装饰者的基类,此类必须继承自 Beverage:

// 调料
public abstract class Condiment extends Beverage {

}

然后我们来定义柠檬、芒果等具体的调料,它们属于装饰者,毫无疑问,这些调料肯定都需要继承 Condiment 类:

public class Lemon extends Condiment {
    private Beverage bevarage;
      // 这里很关键,需要传入具体的饮料,如需要传入没有被装饰的红茶或绿茶,
      // 当然也可以传入已经装饰好的芒果绿茶,这样可以做芒果柠檬绿茶
      public Lemon(Beverage bevarage) {
        this.bevarage = bevarage;
    }
      public String getDescription() {
        // 装饰
        return bevarage.getDescription() + ", 加柠檬";
    }
      public double cost() {
          // 装饰
        return beverage.cost() + 2; // 加柠檬需要 2 元
    }
}
public class Mango extends Condiment {
    private Beverage bevarage;
      public Mango(Beverage bevarage) {
        this.bevarage = bevarage;
    }
      public String getDescription() {
        return bevarage.getDescription() + ", 加芒果";
    }
      public double cost() {
        return beverage.cost() + 3; // 加芒果需要 3 元
    }
}
...// 给每一种调料都加一个类

看客户端调用:

public static void main(String[] args) {
      // 首先,我们需要一个基础饮料,红茶、绿茶或咖啡
    Beverage beverage = new GreenTea();
      // 开始装饰
      beverage = new Lemon(beverage); // 先加一份柠檬
      beverage = new Mongo(beverage); // 再加一份芒果

      System.out.println(beverage.getDescription() + " 价格:¥" + beverage.cost());
      //"绿茶, 加柠檬, 加芒果 价格:¥16"
}

如果我们需要芒果珍珠双份柠檬红茶:

Beverage beverage = new Mongo(new Pearl(new Lemon(new Lemon(new BlackTea()))));

是不是很变态?

看看下图可能会清晰一些:

到这里,大家应该已经清楚装饰模式了吧。

下面,我们再来说说 java IO 中的装饰模式。看下图 InputStream 派生出来的部分类:

我们知道 InputStream 代表了输入流,具体的输入来源可以是文件(FileInputStream)、管道(PipedInputStream)、数组(ByteArrayInputStream)等,这些就像前面奶茶的例子中的红茶、绿茶,属于基础输入流。

FilterInputStream 承接了装饰模式的关键节点,其实现类是一系列装饰器,比如 BufferedInputStream 代表用缓冲来装饰,也就使得输入流具有了缓冲的功能,LineNumberInputStream 代表用行号来装饰,在操作的时候就可以取得行号了,DataInputStream 的装饰,使得我们可以从输入流转换为 java 中的基本类型值。

当然,在 java IO 中,如果我们使用装饰器的话,就不太适合面向接口编程了,如:

InputStream inputStream = new LineNumberInputStream(new BufferedInputStream(new FileInputStream("")));

这样的结果是,InputStream 还是不具有读取行号的功能,因为读取行号的方法定义在 LineNumberInputStream 类中。

我们应该像下面这样使用:

DataInputStream is = new DataInputStream(
                              new BufferedInputStream(
                                  new FileInputStream("")));

所以说嘛,要找到纯的严格符合设计模式的代码还是比较难的。

门面模式

门面模式(也叫外观模式,Facade Pattern)在许多源码中有使用,比如 slf4j 就可以理解为是门面模式的应用。这是一个简单的设计模式,我们直接上代码再说吧。

首先,我们定义一个接口:

public interface Shape {
   void draw();
}

定义几个实现类:

public class Circle implements Shape {

   @Override
   public void draw() {
      System.out.println("Circle::draw()");
   }
}

public class Rectangle implements Shape {

   @Override
   public void draw() {
      System.out.println("Rectangle::draw()");
   }
}

客户端调用:

public static void main(String[] args) {
    // 画一个圆形
      Shape circle = new Circle();
      circle.draw();

      // 画一个长方形
      Shape rectangle = new Rectangle();
      rectangle.draw();
}

以上是我们常写的代码,我们需要画圆就要先实例化圆,画长方形就需要先实例化一个长方形,然后再调用相应的 draw() 方法。

下面,我们看看怎么用门面模式来让客户端调用更加友好一些。

我们先定义一个门面:

public class ShapeMaker {
   private Shape circle;
   private Shape rectangle;
   private Shape square;

   public ShapeMaker() {
      circle = new Circle();
      rectangle = new Rectangle();
      square = new Square();
   }

  /** * 下面定义一堆方法,具体应该调用什么方法,由这个门面来决定 */

   public void drawCircle(){
      circle.draw();
   }
   public void drawRectangle(){
      rectangle.draw();
   }
   public void drawSquare(){
      square.draw();
   }
}

看看现在客户端怎么调用:

public static void main(String[] args) {
  ShapeMaker shapeMaker = new ShapeMaker();

  // 客户端调用现在更加清晰了
  shapeMaker.drawCircle();
  shapeMaker.drawRectangle();
  shapeMaker.drawSquare();        
}

门面模式的优点显而易见,客户端不再需要关注实例化时应该使用哪个实现类,直接调用门面提供的方法就可以了,因为门面类提供的方法的方法名对于客户端来说已经很友好了。

组合模式

组合模式用于表示具有层次结构的数据,使得我们对单个对象和组合对象的访问具有一致性。

直接看一个例子吧,每个员工都有姓名、部门、薪水这些属性,同时还有下属员工集合(虽然可能集合为空),而下属员工和自己的结构是一样的,也有姓名、部门这些属性,同时也有他们的下属员工集合。

public class Employee {
   private String name;
   private String dept;
   private int salary;
   private List<Employee> subordinates; // 下属

   public Employee(String name,String dept, int sal) {
      this.name = name;
      this.dept = dept;
      this.salary = sal;
      subordinates = new ArrayList<Employee>();
   }

   public void add(Employee e) {
      subordinates.add(e);
   }

   public void remove(Employee e) {
      subordinates.remove(e);
   }

   public List<Employee> getSubordinates(){
     return subordinates;
   }

   public String toString(){
      return ("Employee :[ Name : " + name + ", dept : " + dept + ", salary :" + salary+" ]");
   }   
}

通常,这种类需要定义 add(node)、remove(node)、getChildren() 这些方法。

这说的其实就是组合模式,这种简单的模式我就不做过多介绍了,相信各位读者也不喜欢看我写废话。

享元模式

英文是 Flyweight Pattern,不知道是谁最先翻译的这个词,感觉这翻译真的不好理解,我们试着强行关联起来吧。Flyweight 是轻量级的意思,享元分开来说就是 共享 元器件,也就是复用已经生成的对象,这种做法当然也就是轻量级的了。

复用对象最简单的方式是,用一个 HashMap 来存放每次新生成的对象。每次需要一个对象的时候,先到 HashMap 中看看有没有,如果没有,再生成新的对象,然后将这个对象放入 HashMap 中。

这种简单的代码我就不演示了。

结构型模式总结

前面,我们说了代理模式、适配器模式、桥梁模式、装饰模式、门面模式、组合模式和享元模式。读者是否可以分别把这几个模式说清楚了呢?在说到这些模式的时候,心中是否有一个清晰的图或处理流程在脑海里呢?

代理模式是做方法增强的,适配器模式是把鸡包装成鸭这种用来适配接口的,桥梁模式做到了很好的解耦,装饰模式从名字上就看得出来,适合于装饰类或者说是增强类的场景,门面模式的优点是客户端不需要关心实例化过程,只要调用需要的方法即可,组合模式用于描述具有层次结构的数据,享元模式是为了在特定的场景中缓存已经创建的对象,用于提高性能。

转自https://javadoop.com/post/design-pattern

 

更多内容请关注微信公众号【Java技术江湖】

这是一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM、SpringBoot、MySQL、分布式、中间件、集群、Linux、网络、多线程,偶尔讲点Docker、ELK,同时也分享技术干货和学习经验,致力于Java全栈开发!(关注公众号后回复”资料“即可领取 3T 免费技术学习资源以及我我原创的程序员校招指南、Java学习指南等资源)