题目描述
设有的方格图(,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):
某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入描述:
输入的第一行为一个整数N(表示的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出描述:
只需输出一个整数,表示2条路径上取得的最大的和。
示例1
输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出
67
解答
我们做题的思路可以这样:
①先看一下出题日期(毕竟是NOIP的题目,有一定的水准),然后发现是2000年的普及第四题
我们要知道的是,好像比较前面的几年由于1999的数塔IOI问题后,接下来几年的最后一两题都很喜欢出DP
所以,我们首先看一下题目的内容,求路径最大的方法,这时候就要想到DP或者DFS
②然后我们发现题目的数据规模不大,,所以我们可以考虑用DFS或者DP都可以
但是鉴于 "好像比较前面的几年由于1999的数塔IOI问题后,接下来几年的最后一两题都很喜欢出DP "
我们觉得用DP会比较好
③而且,NOIP的压轴DP题你想要2维过(在考场上是很难想出来的)
所以我们考虑高维
④我们找到一个东西叫做四维DP,因为这题是两个人走,我们思考一下能不能单纯用两个人的模拟过呢?
显然是可以的,我们记表示第1条路线的走法和第2条路线的走法
显然我们可以两个人一起走,复杂度最多就是(哈哈哈时间复杂度这么低)
所以我们就用这个方法了!
⑤然后我们思考动归方程的写法:
第1条路线只可能是从或者转移,第2条路线也只可能从或者转移
而且因为是2个人走,如果走到一点我们的那个点就要打标记说那点上面的值为0
所以我们得到了我们的动归方程(注意:万一与相同这是要小心的!)
⑥最后这题就完美解决啦
#include<bits/stdc++.h> using namespace std; int n,x,y,val,ans=0,maxn,f[12][12][12][12],a[12][12];//a[i][j][k][l]表示两个人同时走,一个走i,j 一个走k,l int main(){ scanf("%d",&n); memset(a,0,sizeof a); while(1){ scanf("%d%d%d",&x,&y,&val); if(x==0&&y==0&&val==0)break; a[x][y]=val; } for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ for(int k=1;k<=n;k++){ for(int l=1;l<=n;l++){ f[i][j][k][l]=max(f[i-1][j][k-1][l],max(f[i][j-1][k-1][l],max(f[i-1][j][k][l-1],f[i][j-1][k][l-1])))+a[i][j]+a[k][l]; if(i==k&&j==l)f[i][j][k][l]-=a[i][j]; } } } } printf("%d\n",f[n][n][n][n]); return 0; }