C++的自动取模类Z和组合数comb用的jiangly鸽鸽的模板,具体实现可以看后面的Python代码
#include <iostream>
#include <vector>
#include <cassert>
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt& operator*=(MInt rhs)& {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt& operator+=(MInt rhs)& {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt& operator-=(MInt rhs)& {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt& operator/=(MInt rhs)& {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream& operator>>(std::istream& is, MInt& a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream& operator<<(std::ostream& os, const MInt& a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 998244353;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 1000000007;
using Z = MInt<P>;
struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;
Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}
void init(int m) {
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);
for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}
Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
Z permu(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(n - m);
}
} comb;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
int n;
std::cin >> n;
std::vector<int> a(n+2);
for(int i = 1; i <= n; i++){
std::cin >> a[i];
}
a[0] = 1000;
a[n+1] = 1;
Z dp = 1;
int prev = a[0],next = a[n+1];
int cnt = 0;
for(int i = 1; i <= n+1; i++){
if(a[i]){
next = a[i];
if(cnt){
int len = prev - next + 1;
dp *= comb.binom(cnt + len -1, len - 1);
cnt = 0;
}
prev = a[i];
}else{
cnt++;
}
}
std::cout << dp << "\n";
}
对于Python来说,同时预处理fac和invfac数组可能会MLE(补测了一下,并不会MLE,那我把同时预处理的代码放最下面),因此我们只预处理fac数组,invfac通过快速幂求逆元来求
import sys
input = lambda : sys.stdin.readline().strip()
P = 10 ** 9 + 7
fac = [0] * 1001001
fac[0] = 1
for i in range(1,1001001):
fac[i] = fac[i - 1] * i % P
def inv(n):
return pow(n, P - 2, P)
def C(n, m):
inv1 = inv(fac[m])
inv2 = inv(fac[n - m])
return (fac[n] * inv1 % P) * inv2 % P
n = int(input())
a = [1000] + list(map(int,input().split())) + [1]
dp, pre, nxt, cnt = 1, a[0], a[-1], 0
for i in range(1,n+2):
if a[i]:
nxt = a[i]
if cnt:
siz = pre - nxt + 1
dp = dp * C(cnt + siz - 1, siz - 1) % P
cnt = 0
pre = a[i]
else:
cnt += 1
print(dp)
同时预处理fac和invfac的Python代码
import sys
input = lambda : sys.stdin.readline().strip()
P = 10 ** 9 + 7
fac = [0] * 1001001
fac[0] = 1
for i in range(1,1001001):
fac[i] = fac[i - 1] * i % P
def inv(n):
return pow(n, P - 2, P)
invfac = [0] * 1001001
invfac[-1] = inv(fac[1001000])
for i in range(1001000, 0, -1):
invfac[i - 1] = invfac[i] * i % P
def C(n, m):
return (fac[n] * invfac[m] % P) * invfac[n-m] % P
n = int(input())
a = [1000] + list(map(int,input().split())) + [1]
dp, pre, nxt, cnt = 1, a[0], a[-1], 0
for i in range(1,n+2):
if a[i]:
nxt = a[i]
if cnt:
siz = pre - nxt + 1
dp = dp * C(cnt + siz - 1, siz - 1) % P
cnt = 0
pre = a[i]
else:
cnt += 1
print(dp)

京公网安备 11010502036488号