1001 Road To The 3rd Building
链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1001&cid=884
题意:
n 个点根为 1 的树,每个点上有价值ai的苹果
树上有 m 个监控:x k c
在点 x 有一个监控,可以检测到最短距离在 k 以内的所有子树上的点
破坏该监控需要 c,求最大收获
思路:
计算每个数对答案的贡献。对于S_1,贡献为(1 * S_1 / 1) + (1 * S1 /2) + (1 * S1/3) + ......+(1 * S1 / n);对于S2,贡献为(1 * S2 / 1) + (2 * S2 /2) + (2 * S2/3) + ......+(2 * S2 / (n - 1)) + (1 * S2 / n)......将这些贡献的计算总结在表格中。先暂时不看乘号前的数字,乘号后的数规律为:Si / k(k [1,N])。然后单独看乘号前的数,会发现这个NN的表格,最外圈全为1,第二圈全为2,第三圈全为3,直到第N/2圈。因此计算答案时一圈一圈的算。在计算第 i 圈时,我的计算方法是先计算这一圈的第一列和最后一列的和,然后计算第一行和最后一行去掉首尾的和。
*代码:**
#include <cstdio> #include <algorithm> #include <iostream> #include <vector> #include <map> #include <queue> #include <set> #include <ctime> #include <cstring> #include <cstdlib> #include <math.h> using namespace std; typedef long long ll; //#define ll long long const ll N = 1e3 + 5; const ll maxn = 2e5 + 20; const ll mod = 1000000007; ll inv[maxn], vis[maxn], dis[maxn]; ll max(ll a, ll b) { return a > b ? a : b; } ll min(ll a, ll b) { return a < b ? a : b; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a * b / gcd(a, b); } map<ll, ll> mp; ll ksm(ll a, ll b) { a %= mod; ll ans = 1ll; while (b) { if (b & 1) ans = (ans * a) % mod; a = (a * a) % mod; b >>= 1ll; } return ans; } ll dp[105][16005]; string p = "abacaba"; queue<ll> qk, q; vector<ll> vec; ll sumx[maxn], sumy[maxn], sumk[maxn]; int main() { ll t, n, ans; scanf("%lld", &t); while (t--) { memset(sum, 0, sizeof sum); memset(sumx, 0, sizeof sumx); memset(sumy, 0, sizeof sumy); memset(sumk, 0, sizeof sumk); scanf("%lld", &n); ans = 0; for (ll i = 1ll; i <= n; i++) scanf("%lld", &a[i]), sum[i] = (sum[i - 1ll] + a[i]) % mod; for (ll i = 1ll; i <= n; i++) sumx[i] = (sumx[i - 1ll] + sum[i]) % mod; ll k = n; for (ll i = 1ll; i <= n; i++) sumy[i] = (sumy[i - 1ll] + a[k]) % mod, k--; for (ll i = 1ll; i <= n; i++) sumk[i] = (sumk[i - 1ll] + sumy[i]) % mod; for (ll i = 1ll; i <= n; i++) { ans = (ans + ((((i * sum[n] % mod) - sumx[i - 1ll] - sumk[i - 1ll] + mod) % mod) * ksm(i, mod - 2ll) % mod)) % mod; } ll np = (((n + 1ll) * n) / 2ll) % mod; printf("%lld\n", ((ans % mod) * (ksm(np, mod - 2ll) % mod) % mod)); } }
1002 Little Rabbit's Equation
链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1002&cid=884
题意:
给定一个运算表达式,形式上满足 num1 op num2=num3(op∈{+,−,∗,/})
问你这个表达式在何种进制下(2−16)成立,输出最小的可行进制。
思路:很水的一个暴力题。只要将输入的表达式拆分成三个字符串,然后枚举所有进制,当小字符串在当前进制下合法(所有数位上的数小于进制),将其转化为十进制数,判断十进制下表达式是否成立。如果都不成立就输出-1。
代码:
#include<bits/stdc++.h> #define fi first #define se second #define pb push_back #define LL long long #define PII pair<int, int> using namespace std; const int maxn = 1e5 + 5; const int inf = 0x3f3f3f3f; const LL mod = 1e9 + 7; inline int read(){ char c = getchar(); while(!isdigit(c)) c = getchar(); int x = 0; while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); } return x; } inline bool op(char x){ if(x == '+') return 0; if(x == '-') return 0; if(x == '*') return 0; if(x == '/') return 0; if(x == '=') return 0; return 1; } char s[20]; inline void cal(int &cur, string &x){ int len = strlen(s); while(cur < len && op(s[cur])){ if(x.size() == 0) if(s[cur] == '0'){ cur++; continue; } x += s[cur++]; } cur++; } inline LL change(int cur, string x){ int len = x.size(); LL Base = 1; LL ans = 0; for(int i = len - 1; i >= 0; --i){ int c; if(x[i] >= '0' && x[i] <= '9') c = x[i] - '0'; else if(x[i] <= 'F' && x[i] >= 'A') c = x[i] - 'A' + 10; if(c >= cur) return -1; ans += c * Base; Base = Base * cur; } return ans; } inline bool judge(LL a, LL b, LL c, char op){ if(op == '+') if(a + b == c) return 1; if(op == '-') if(a - b == c) return 1; if(op == '*') if(a * b == c) return 1; if(op == '/') if(c * b == a) return 1; return 0; } int main(){ while(~scanf(" %s", s)){ string x, y, z; int cur = 0; char op; cal(cur, x); op = s[cur - 1]; cal(cur, y); cal(cur, z); int ans = -1; for(int i = 2; i <= 16; ++i){ LL a, b, c; a = change(i, x); if(a == -1) continue; b = change(i, y); if(b == -1) continue; c = change(i, z); if(c == -1) continue; if(judge(a, b, c, op)){ ans = i; break; } } printf("%d\n", ans); } return 0; }
1006 A Very Easy Graph Problem
链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1006&cid=884
思路:
因为边权是按照输入顺序递增的。且对于第 i 条边,前 i - 1 条边的权值和都小于第 i 条边,因此按照输入顺序建新图,当输入边的两个端点不属于同一连通块时在新图中加入这条边,输入结束后的新图必定是一颗树,且两点间的距离必定在旧图中也是最小的。随意选取树上的一个点作为根节点,跑一遍DFS,记录下每个点以及它所有子树的权值为1的点的个数和以及权值0的点的个数和。因为题目的限制,因此对答案有贡献的边必定都在树上。又根据乘号后的表达式的要求,某一条边被遍历的次数必定是这条边下面的所有权值1的点的个数 * 这条边上面所有权值0的点的个数 + 下面所有权值0的点的个数 * 上面所有权值1的点的个数。因此只要直到一个点的所有子结点中有多少个权值flag结点,将总flag权值结点个数-子结点中flag权值结点个数就是上面的flag权值结点个数。具体的看代码吧。
代码:
#include<bits/stdc++.h> using namespace std; #define fi first #define se second #define mp make_pair #define LL long long #define pii pair<int, int> const LL mod = 1e9 + 7; const int maxn = 2e5 + 5; const LL inf = 0x3f3f3f3f3f3f3f3f; const double eps = 1e-8; const double pi = acos(-1.0); vector<int> G[maxn]; LL w[maxn]; int a[maxn], u[maxn], v[maxn]; int pre[maxn], dfn[maxn]; bool add[maxn]; int find(int x) { return x == pre[x] ? x : pre[x] = find(pre[x]); } int cnt, sum[2], num[maxn][2]; void dfs(int now, int fa) { dfn[now] = ++cnt; int len = G[now].size(); num[now][0] = (a[now] == 0); num[now][1] = (a[now] == 1); for(int i = 0; i < len; ++i) { int son = G[now][i]; if(son == fa) continue; dfs(son, now); num[now][0] += num[son][0]; num[now][1] += num[son][1]; } } int main() { w[0] = 1LL; for(int i = 1; i < maxn; ++i) { w[i] = w[i - 1] * 2LL % mod; } int T; cin >> T; while(T--) { int n, m; scanf("%d%d", &n, &m); sum[0] = sum[1] = 0; for(int i = 1; i <= n; ++i) { scanf("%d", a + i); sum[0] += (a[i] == 0); sum[1] += (a[i] == 1); pre[i] = i; G[i].clear(); } memset(add, false, sizeof add); for(int i = 1; i <= m; ++i) { scanf("%d%d", u + i, v + i); int fu = find(u[i]); int fv = find(v[i]); if(fu == fv) continue; pre[fv] = fu; add[i] = true; G[u[i]].push_back(v[i]); G[v[i]].push_back(u[i]); } cnt = 0; dfs(1, 0); LL ans = 0; for(int i = 1; i <= m; ++i) { if(!add[i]) continue; int fa = u[i], son = v[i]; if(dfn[fa] > dfn[son]) swap(fa, son); int fa0 = sum[0] - num[son][0]; int fa1 = sum[1] - num[son][1]; ans = (ans + w[i] * (fa0 * num[son][1] % mod) % mod) % mod; ans = (ans + w[i] * (fa1 * num[son][0] % mod) % mod) % mod; } printf("%lld\n", ans); } return 0; }
1009 Divisibility
链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1009&cid=884
题意:
水题,没做上,丢人
代码:
#include <cstdio> #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <math.h> using namespace std; typedef long long ll; int main() { ll t, n, ans; scanf("%lld", &t); while (t--) { ll n, x; cin >> n >> x; if ((n % x) == 1) cout << "T" << endl; else { cout << "F" << endl; } } }