题目链接:https://ac.nowcoder.com/acm/contest/949/H
题意:求区间gcd,带修改。
题解:线段树gcd,差分,单点修改,区间询问。注意gcd满足的性质,可以使其差分,这样区间修改就可以转话成两次单点修改。
//线段树gcd,差分,单点修改,区间询问。
#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
const int maxn = 100005;
ll input[maxn];
ll a[maxn];
ll c[maxn * 4];
int n, m;
int lowbit(int x)
{
return x & -x;
}
void add(int x, int val)
{
while (x <= n)
{
c[x] += val;
x += lowbit(x);
}
}
ll sum(ll x)
{
ll ans = 0;
while (x)
{
ans += c[x];
x -= lowbit(x);
}
return ans;
}
ll _gcd(ll a, ll b)
{
if (b == 0)
return a;
else
return __gcd(b, a%b);
}
struct node
{
ll l, r; //左右区间
ll MAX, MIN, g; //最大,最小,gcd
}tree[maxn * 4]; //4倍空间
void build(int i, int l, int r) //递归建树
{
tree[i].l = l; tree[i].r = r;
if (l == r) //如果这个节点是叶子节点
{
tree[i].MAX = input[l];
tree[i].MIN = input[l];
tree[i].g = abs(input[l]);
return;
}
int mid = (l + r) >> 1;
build(i * 2, l, mid); //分别构造左子树和右子树
build(i * 2 + 1, mid + 1, r);
tree[i].g = __gcd(tree[i * 2].g, tree[i * 2 + 1].g);
tree[i].MAX = max(tree[i * 2].MAX, tree[i * 2 + 1].MAX);
tree[i].MIN = min(tree[i * 2].MIN, tree[i * 2 + 1].MIN);
}
ll search_max(int i, ll l, ll r)
{
if (tree[i].l >= l && tree[i].r <= r) //如果这个区间被完全包括在目标区间里面,直接返回这个区间的值
return tree[i].MAX;
if (tree[i].r<l || tree[i].l>r) return 0; //如果这个区间和目标区间毫不相干,返回0
return max(search_max(i * 2, l, r), search_max(i * 2 + 1, l, r));
}
ll search_min(int i, ll l, ll r)
{
if (tree[i].l >= l && tree[i].r <= r) //如果这个区间被完全包括在目标区间里面,直接返回这个区间的值
return tree[i].MIN;
if (tree[i].r<l || tree[i].l>r) return 0; //如果这个区间和目标区间毫不相干,返回0
return min(search_min(i * 2, l, r), search_min(i * 2 + 1, l, r));
}
ll search_gcd(int i, ll l, ll r)
{
if (tree[i].l >= l && tree[i].r <= r) //如果这个区间被完全包括在目标区间里面,直接返回这个区间的值
return tree[i].g;
if (tree[i].r<l || tree[i].l>r) return 0; //如果这个区间和目标区间毫不相干,返回0
return __gcd(search_gcd(i * 2, l, r), search_gcd(i * 2 + 1, l, r));
}
void add(int i, ll l, ll r, ll k) //其实这点是单点修改,不用区间
{
if (tree[i].r == r && tree[i].l == l) //如果当前区间被完全覆盖在目标区间里
{
tree[i].MAX += k;
tree[i].MIN += k;
tree[i].g = abs(input[l]); //直接更新根节点
return;
}
if (tree[i * 2].r >= l)
add(i * 2, l, r, k);
if (tree[i * 2 + 1].l <= r)
add(i * 2 + 1, l, r, k);
tree[i].g = __gcd(tree[i * 2].g, tree[i * 2 + 1].g);
tree[i].MAX = max(tree[i * 2].MAX, tree[i * 2 + 1].MAX);
tree[i].MIN = min(tree[i * 2].MIN, tree[i * 2 + 1].MIN);
return;
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
scanf("%lld", &a[i]);
input[i] = a[i] - a[i - 1];
}
build(1, 1, n);
for (int i = 1; i <= n; i++) //加入树状数组,维护差分
{
add(i, input[i]);
}
while (m--)
{
int tp;
scanf("%d", &tp);
if (tp == 1)
{
ll x, y, k;
scanf("%lld%lld%lld", &x, &y, &k);
input[x] += k; //根节点修改
add(1, x, x, k); //父节点修改
add(x, k); //树状数组维护差分区间
if (y + 1 <= n)
{
input[y + 1] -= k;
add(1, y + 1, y + 1, -k);
add(y + 1, -k);
}
}
else if (tp == 2)
{
ll x, y;
scanf("%lld%lld", &x, &y);
if (x == y)
cout << 0 << endl;
else
{
ll ans = abs(max(abs(search_min(1, x + 1, y)), abs(search_max(1, x + 1, y))));//寻找绝对值最大的差分
printf("%lld\n", ans);
}
}
else
{
ll x, y;
scanf("%lld%lld", &x, &y);
printf("%lld\n", __gcd(sum(x), search_gcd(1, x + 1, y)));
}
}
return 0;
}