题目链接:https://www.luogu.com.cn/problem/CF896C
题目大意:
这个数据读入有点毒瘤,其他解是模板了。
#include <bits/stdc++.h> #define ll long long #define sit set<node>::iterator using namespace std; struct node{ int l, r; mutable ll val; int operator<(const node &a) const{ return l<a.l; } node(int L, int R, ll Val): l(L), r(R), val(Val){} node(int L) : l(L){} }; struct odTree{ set<node> s; sit Split(int pos){//一个节点分裂[l, r]->[l, pos-1]+[pos, r] sit it=s.lower_bound(node(pos)); if(it!=s.end()&&it->l==pos) return it; --it; int l=it->l, r=it->r; ll val=it->val; s.erase(it); s.insert(node(l, pos-1, val)); return s.insert(node(pos, r, val)).first; } void Assign(int l, int r, ll val){//区间赋值 sit it2=Split(r+1), it1=Split(l); s.erase(it1, it2); s.insert(node{l, r, val}); } void Add(int l, int r, ll val){//区间[l, r]+=val sit it2=Split(r+1), it1=Split(l); for(sit it=it1; it!=it2; ++it) it->val+=val; } ll Kth(int l, int r, int k){//区间[l, r]的第k小 sit it2=Split(r+1), it1=Split(l); vector<pair<ll, int> > aa; aa.clear(); for(sit it=it1; it!=it2; ++it){ aa.push_back(pair<ll, int>(it->val, it->r-it->l+1) ); } sort(aa.begin(), aa.end()); for(int i=0; i<aa.size(); ++i){ k-=aa[i].second; if(k<=0) return aa[i].first; } } ll qpow(ll a, int x, ll y){//求a^x%y ll b=1ll; a%=y; while(x){ if(x&1) b=b*a%y; a=a*a%y; x>>=1; } return b; } ll Query(int l, int r, int x, ll y){//求[l, r], a[i]^x%y的和 暴力枚举+快速幂 sit it2=Split(r+1), it1=Split(l); ll res=0; for(sit it=it1; it!=it2; ++it){ res=(res+(it->r-it->l+1)*qpow(it->val, x, y)%y)%y; } return res; } }Tree; int n, m, vmax; ll seed; int rd(){ int ret=(int)seed; seed=(seed*7+13)%1000000007; return ret; } int main(){ scanf("%d%d%lld%d", &n, &m, &seed, &vmax); for(int i=1; i<=n; i++){ int a=rd()%vmax+1; Tree.s.insert(node(i, i, (ll)a)); } Tree.s.insert(node(n+1, n+1, 0)); for(int i=1; i<=m; i++){ int l, r, x, y; int op=rd()%4+1; l=rd()%n+1, r=rd()%n+1; if(l>r) swap(l, r); if (op == 3) x = rd() % (r - l + 1) + 1; else x = rd() % vmax + 1; if (op == 4) y = rd() % vmax + 1; if (op == 1) Tree.Add(l, r, (ll)x); else if (op == 2) Tree.Assign(l, r, (ll)x); else if (op == 3) printf("%lld\n", Tree.Kth(l, r, x)); else if (op == 4) printf("%lld\n", Tree.Query(l, r, x, (ll)y)); } return 0; }