题面\\ i=1nj=1iphi(j)×ij求\sum_{i=1}^n \sum_{j=1}^{i} phi(j) \times \lfloor \frac{i}{j} \rfloor \\ g(n)=i=1nj=1iphi(j)×ij设g(n)=\sum_{i=1}^n \sum_{j=1}^{i} phi(j) \times \lfloor \frac{i}{j} \rfloor \\ h(n)=g(n)g(n1)=i=1nphi(i)×ni设h(n)=g(n)-g(n-1) =\sum_{i=1}^n phi(i) \times \lfloor \frac{n}{i} \rfloor \\ v(n)=h(n)h(n1)=i=1nphi(i)×nii=1n1phi(i)×n1i设v(n)=h(n)-h(n-1) =\sum_{i=1}^n phi(i) \times \lfloor \frac{n}{i} \rfloor - \sum_{i=1}^{n-1} phi(i) \times \lfloor \frac{n-1}{i} \rfloor \\ v(n)=phi(n)+i=1n1phi(i)×(nin1i)v(n)=phi(n) + \sum_{i=1}^{n-1} phi(i) \times (\lfloor \frac{n}{i} \rfloor - \lfloor \frac{n-1}{i} \rfloor) \\          =phi(n)+i=1n1phi(i)×(d=1n[d×in]d=1n1[d×in1])\ \ \ \ \ \ \ \ \ =phi(n) + \sum_{i=1}^{n-1} phi(i) \times (\sum_{d=1}^{n}[d \times i\leq n] -\sum_{d=1}^{n-1}[d \times i\leq n-1])\\          =phi(n)+i=1n1phi(i)×([i==1]+d=1n1([d×in][d×in1]))\ \ \ \ \ \ \ \ \ =phi(n) + \sum_{i=1}^{n-1} phi(i) \times ([i==1]+\sum_{d=1}^{n-1}([d \times i\leq n]-[d \times i\leq n-1]))\\          =phi(n)+i=1n1phi(i)×([i==1]+d=1n1[d×i==n])\ \ \ \ \ \ \ \ \ =phi(n) + \sum_{i=1}^{n-1} phi(i) \times ([i==1]+\sum_{d=1}^{n-1}[d \times i ==n])\\ 发现可以写成\\          =phi(n)+i=1n1phi(i)×d=1n[d×i==n]\ \ \ \ \ \ \ \ \ =phi(n) + \sum_{i=1}^{n-1} phi(i) \times \sum_{d=1}^{n}[d \times i ==n]\\          =i=1nphi(i)×d=1n[d×i==n]\ \ \ \ \ \ \ \ \ =\sum_{i=1}^{n} phi(i) \times \sum_{d=1}^{n}[d \times i ==n]\\          =inphi(i)\ \ \ \ \ \ \ \ \ =\sum_{i|n} phi(i) \\          =n\ \ \ \ \ \ \ \ \ =n \\ v(n)=n即v(n)=n \\ g(n)=i=1nj=1ij即g(n)=\sum_{i=1}^{n}\sum_{j=1}^{i}j \\          =i=1ni×(i+1)2\ \ \ \ \ \ \ \ \ =\sum_{i=1}^{n}\frac{i \times (i+1)}{2} \\          =12(i=1ni+i=1ni2)\ \ \ \ \ \ \ \ \ =\frac{1}{2}(\sum_{i=1}^{n}i +\sum_{i=1}^{n}i^2)\\          =12(n×(n+1)×(2n+1)6+n×(n+1)2)\ \ \ \ \ \ \ \ \ =\frac{1}{2}(\frac{n \times (n+1) \times (2n+1)}{6} + \frac{n \times (n+1)}{2}) \\          =n×(n+1)×(n+2)6\ \ \ \ \ \ \ \ \ =\frac{n \times (n+1) \times (n+2)}{6}\\ (中间可能有写错的地方,望各位大佬指正 (代码很简单就不放了\\