题目:
Suppose you are performing the following algorithm. There is an array v1,v2,…,vn filled with zeroes at start. The following operation is applied to the array several times — at i-th step (0-indexed) you can:
either choose position pos (1≤pos≤n) and increase vpos by ki;
or not choose any position and skip this step.
You can choose how the algorithm would behave on each step and when to stop it. The question is: can you make array v equal to the given array a (vj=aj for each j) after some step?
Input
The first line contains one integer T (1≤T≤1000) — the number of test cases. Next 2T lines contain test cases — two lines per test case.
The first line of each test case contains two integers n and k (1≤n≤30, 2≤k≤100) — the size of arrays v and a and value k used in the algorithm.
The second line contains n integers a1,a2,…,an (0≤ai≤1016) — the array you’d like to achieve.
Output
For each test case print YES (case insensitive) if you can achieve the array a after some ste***O (case insensitive) otherwise.
样例:
输入:
5
4 100
0 0 0 0
1 2
1
3 4
1 4 1
3 2
0 1 3
3 9
0 59049 810
输出:
YES
YES
NO
NO
YES
题意: 给定一个长度为n的数组,然后判断能否有一个全0的数组加k的次方得到,可以选择不加,但是最多只能加一次,并且k的次方不可重复。
判断是否可以通过变换得到原数组,如果可以输出YES,否则输出NO。
题解: 把原数组中的数写成k进制,判断相同位上的数之和是否大于1
AC代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
bool cmp(int a, int b){
return a > b;
}
int main()
{
int T; cin >> T;
while(T--){
int n; ll k;
cin >> n >> k;
ll a[105];
for(int i = 0; i < n; i++)
cin >> a[i];
int flag = 0, b[105];
memset(b, 0, sizeof(b));
for(int i = 0; i < n; i++){
ll t = a[i];
int j = 0;
while(t){
b[j] += (t % k);
if(b[j] > 1){
flag = 1;
break;
}
j++;
t /= k;
}
if(flag)
break;
}
if(flag)
cout << "NO" << endl;
else
cout << "YES" << endl;
}
return 0;
}