class Solution {
public:
/**
* longest common substring
* @param str1 string字符串 the string
* @param str2 string字符串 the string
* @return string字符串
*/
int dpMatrix[5001][5001] = {0};
int maxIdx;
int maxJdx;
int maxLen = 0;
/*
i和j代表以str1[i]结尾和str2[j]结尾的子串
状态转移方程为:
1) i = 0 or j = 0, dpMatrix = 0
2) str1[i] == str2[j] dpMatrix[i][j] = dpMatrix[i-1][j-1] + 1
3) str1[i] != str2[j] dpMatrix[i][j] = 0
使用maxLen记录最大长度,maxIdx和maxJdx记录最长子串结尾在str1和str2的index,
LCS就是str1[maxIdx-maxLen]
*/
string LCS(string str1, string str2) {
// write code here
for(int i = 1; i < str1.size()+1; i++)
{
for(int j = 1; j < str2.size()+1; j++)
{
if(str1[i - 1] != str2[j - 1])
{
dpMatrix[i][j] = 0;
}
else
{
dpMatrix[i][j] = dpMatrix[i - 1][j - 1] + 1;
if (dpMatrix[i][j] > maxLen)
{
maxLen = dpMatrix[i][j];
maxIdx = i;
maxJdx = j;
}
}
}
}
return str1.substr(maxIdx - maxLen, maxLen);
}
};