物理内存

1.在应用中,自然是顾名思义,物理上,真实的插在板子上的内存条是多大就是多大了。
2.在CPU中的概念,物理内存就是CPU的地址线可以直接进行寻址的内存空间大小。比如8086只有20根地址 线,那么它的寻址空间就是1MB,我们就说8086能支持1MB的物理内存,及时我们安装了128M的内存条在板子上,我们也只能说8086拥有1MB的物理内存空间。同理我们现在大部分使用的是32位的机子,32位的386以上CPU就可以支持最大4GB的物理内存空间了。

虚拟内存

        虚拟内存跟真实的插在主板上的内存条是不挂钩的,虚拟内存它是“虚拟的”不存在,它只是内存管理的一种抽象!虚拟内存是现代操作系统普遍使用的一种内存管理技术。

出现的原因: 很多情况下,现有内存无法满足仅仅一个大进程的内存要求(比如很多 游戏,都是10G+的级别)。在早期的操作系统曾使用覆盖(overlays)来解决这个问题,将一个程序分为多个块,基本思想是先将块0加入内存,块0执行完后,将块1加入内存。依次往复,这个解决方案最大的问题是需要程序员去程序进行分块,这是一个费时费力让人痛苦不堪的过程。后来这个解决方案的修正版就是虚拟内存。
基本思想: 每个进程有用独立的逻辑地址空间,内存被分为大小相等的多个块,称为页(Page).每个页都是一段连续的地址。对于进程来看,逻辑上貌似有很多内存空间(32位机 4GB),其中一部分对应物理内存上的一块(称为页框,通常页和页框大小相等),还有一些没加载在内存中的对应在硬盘上,如图所示。

计算机的内存分页机制

        计算机会对虚拟内存地址空间(32位为4G)分页产生页(page),对物理内存地址空间(假设256M)分页产生页帧(page frame),这个页和页帧的大小是一样大的,所以呢,在这里,虚拟内存页的个数势必要大于物理内存页帧的个数。在计算机上有一个页表(page table),就是映射虚拟内存页到物理内存页的,更确切的说是页号到页帧号的映射,而且是一对一的映射。但是问题来了,虚拟内存页的个数 > 物理内存页帧的个数,岂不是有些虚拟内存页的地址永远没有对应的物理内存地址空间?不是的,操作系统是这样处理的。操作系统有个页面失效(page fault)功能。操作系统找到一个最少使用的页帧,让他失效,并把它写入磁盘,随后把需要访问的页放到页帧中,并修改页表中的映射,这样就保证所有的页都有被调度的可能了。这就是处理虚拟内存地址到物理内存的步骤。

什么是虚拟内存地址和物理内存地址?

        虚拟内存地址由页号(与页表中的页号关联)和偏移量组成。页号就不必解释了,上面已经说了,页号对应的映射到一个页帧。那么,说说偏移量。偏移量就是我上面说的页(或者页帧)的大小,即这个页(或者页帧)到底能存多少数据。举个例子,有一个虚拟地址它的页号是4,偏移量是20,那么他的寻址过程是这样的:首先到页表中找到页号4对应的页帧号(比如为8),如果页不在内存中,则用失效机制调入页,否则把页帧号和偏移量传给MMU(CPU的内存管理单元)组成一个物理上真正存在的地址,接着就是访问物理内存中的数据了。总结起来说,虚拟内存地址的大小是与地址总线位数相关,物理内存地址的大小跟物理内存条的容量相关。

虚拟内存和物理内存的匹配

        虚拟内存和物理内存的匹配是通过页表实现,页表存在MMU中,页表中每个项通常为32位,既4byte,除了存储虚拟地址和页框地址之外,还会存储一些标志位,比如是否缺页,是否修改过,写保护等。可以把MMU想象成一个接收虚拟地址项返回物理地址的方法。因为页表中每个条目是4字节,现在的32位操作系统虚拟地址空间会是2的32次方,即使每页分为4K,也需要2的20次方*4字节=4M的空间,为每个进程建立一个4M的页表并不明智。因此在页表的概念上进行推广,产生二级页表,二级页表每个对应4M的虚拟地址,而一级页表去索引这些二级页表,因此32位的系统需要1024个二级页表,虽然页表条目没有减少,但内存中可以仅仅存放需要使用的二级页表和一级页表,大大减少了内存的使用。

参考博文: http://blog.sina.com.cn/s/blog_52a079c10100fwto.html
                 https://blog.csdn.net/moshenglv/article/details/52242153