题目描述:
对于A1,A2....AN,求
∑ ^i=1^N∑ ^j=1^Nlcm(Ai,Aj)
题解:
莫比乌斯反演,直接强推一波
推导过程我也是一知半解,大体如图
然后预处理f(T)即可
代码:
#include<bits/stdc++.h> using namespace std; #define ll long long #define maxn 50005 #define rgt register int N, M, cnt[maxn], mu[maxn], p[maxn], tot, v[maxn]; ll s[maxn]; ll ans=0; int main(){ scanf( "%d", &N ); for ( rgt int i = 1, x; i <= N; ++i ) scanf( "%d", &x ), ++cnt[x], M = max( M, x ); N = M, mu[1] = 1; for ( rgt int i = 2; i <= N; ++i ){//线性筛出mu if ( !v[i] ) p[++tot] = i, mu[i] = -1; for ( rgt int j = 1; j <= tot && i * p[j] <= N; ++j ){ v[i * p[j]] = 1; if ( i % p[j] == 0 ){ mu[i * p[j]] = 0; break; } else mu[i * p[j]] = -mu[i]; } } for ( rgt int i = 1; i <= N; ++i ) for ( rgt int j = i; j <= N; j += i ) s[j] += 1ll * mu[i] * i;//预处理提到过的那玩意 for ( rgt int T = 1; T <= N; ++T ){ rgt ll cur(0); for ( rgt int i = 1, I = N / T; i <= I; ++i ) cur += 1ll * cnt[i * T] * i;//暴力求解 ans += T * cur * cur * s[T]; } printf( "%lld\n", ans ); return 0; }