import os
import gym
import numpy as np
import pandas as pd
import tensorflow as tf
class PPO:
def __init__(self, ep, batch, t='ppo2'):
self.t = t
self.ep = ep
self.batch = batch
self.log = 'model/{}_log'.format(t)
self.env = gym.make('Pendulum-v0')
self.bound = self.env.action_space.high[0]
self.gamma = 0.9
self.A_LR = 0.0001
self.C_LR = 0.0002
self.A_UPDATE_STEPS = 10
self.C_UPDATE_STEPS = 10
self.kl_target = 0.01
self.lam = 0.5
self.epsilon = 0.2
self.sess = tf.Session()
self.build_model()
def _build_critic(self):
"""critic model. """
with tf.variable_scope('critic'):
x = tf.layers.dense(self.states, 100, tf.nn.relu)
self.v = tf.layers.dense(x, 1)
self.advantage = self.dr - self.v
def _build_actor(self, name, trainable):
"""actor model. """
with tf.variable_scope(name):
x = tf.layers.dense(self.states, 100, tf.nn.relu, trainable=trainable)
mu = self.bound * tf.layers.dense(x, 1, tf.nn.tanh, trainable=trainable)
sigma = tf.layers.dense(x, 1, tf.nn.softplus, trainable=trainable)
norm_dist = tf.distributions.Normal(loc=mu, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
def build_model(self):
"""build model with ppo loss. """
self.states = tf.placeholder(tf.float32, [None, 3], 'states')
self.action = tf.placeholder(tf.float32, [None, 1], 'action')
self.adv = tf.placeholder(tf.float32, [None, 1], 'advantage')
self.dr = tf.placeholder(tf.float32, [None, 1], 'discounted_r')
self._build_critic()
nd, pi_params = self._build_actor('actor', trainable=True)
old_nd, oldpi_params = self._build_actor('old_actor', trainable=False)
with tf.variable_scope('loss'):
self.closs = tf.reduce_mean(tf.square(self.advantage))
with tf.variable_scope('surrogate'):
ratio = tf.exp(nd.log_prob(self.action) - old_nd.log_prob(self.action))
surr = ratio * self.adv
if self.t == 'ppo1':
self.tflam = tf.placeholder(tf.float32, None, 'lambda')
kl = tf.distributions.kl_divergence(old_nd, nd)
self.kl_mean = tf.reduce_mean(kl)
self.aloss = -(tf.reduce_mean(surr - self.tflam * kl))
else:
self.aloss = -tf.reduce_mean(tf.minimum(
surr,
tf.clip_by_value(ratio, 1.- self.epsilon, 1.+ self.epsilon) * self.adv))
with tf.variable_scope('optimize'):
self.ctrain_op = tf.train.AdamOptimizer(self.C_LR).minimize(self.closs)
self.atrain_op = tf.train.AdamOptimizer(self.A_LR).minimize(self.aloss)
with tf.variable_scope('sample_action'):
self.sample_op = tf.squeeze(nd.sample(1), axis=0)
with tf.variable_scope('update_old_actor'):
self.update_old_actor = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)]
tf.summary.FileWriter(self.log, self.sess.graph)
self.sess.run(tf.global_variables_initializer())
def choose_action(self, state):
"""choice continuous action from normal distributions. Arguments: state: state. Returns: action. """
state = state[np.newaxis, :]
action = self.sess.run(self.sample_op, {
self.states: state})[0]
return np.clip(action, -self.bound, self.bound)
def get_value(self, state):
"""get q value. Arguments: state: state. Returns: q_value. """
if state.ndim < 2: state = state[np.newaxis, :]
return self.sess.run(self.v, {
self.states: state})
def discount_reward(self, states, rewards, next_observation):
"""Compute target value. Arguments: states: state in episode. rewards: reward in episode. next_observation: state of last action. Returns: targets: q targets. """
s = np.vstack([states, next_observation.reshape(-1, 3)])
q_values = self.get_value(s).flatten()
targets = rewards + self.gamma * q_values[1:]
targets = targets.reshape(-1, 1)
return targets
def update(self, states, action, dr):
"""update model. Arguments: states: states. action: action of states. dr: discount reward of action. """
self.sess.run(self.update_old_actor)
adv = self.sess.run(self.advantage,
{
self.states: states,
self.dr: dr})
if self.t == 'ppo1':
for _ in range(self.A_UPDATE_STEPS):
_, kl = self.sess.run(
[self.atrain_op, self.kl_mean],
{
self.states: states,
self.action: action,
self.adv: adv,
self.tflam: self.lam})
if kl < self.kl_target / 1.5:
self.lam /= 2
elif kl > self.kl_target * 1.5:
self.lam *= 2
else:
for _ in range(self.A_UPDATE_STEPS):
self.sess.run(self.atrain_op,
{
self.states: states,
self.action: action,
self.adv: adv})
for _ in range(self.C_UPDATE_STEPS):
self.sess.run(self.ctrain_op,
{
self.states: states,
self.dr: dr})
def train(self):
"""train method. """
tf.reset_default_graph()
history = {
'episode': [], 'Episode_reward': []}
for i in range(self.ep):
observation = self.env.reset()
states, actions, rewards = [], [], []
episode_reward = 0
j = 0
while True:
a = self.choose_action(observation)
next_observation, reward, done, _ = self.env.step(a)
states.append(observation)
actions.append(a)
episode_reward += reward
rewards.append((reward + 8) / 8)
observation = next_observation
if (j + 1) % self.batch == 0:
states = np.array(states)
actions = np.array(actions)
rewards = np.array(rewards)
d_reward = self.discount_reward(states, rewards, next_observation)
self.update(states, actions, d_reward)
states, actions, rewards = [], [], []
if done:
break
j += 1
history['episode'].append(i)
history['Episode_reward'].append(episode_reward)
print('Episode: {} | Episode reward: {:.2f}'.format(i, episode_reward))
return history
def save_history(self, history, name):
name = os.path.join('history', name)
df = pd.DataFrame.from_dict(history)
df.to_csv(name, index=False, encoding='utf-8')
if __name__ == '__main__':
model = PPO(1000, 32, 'ppo1')
history = model.train()
model.save_history(history, 'ppo1.csv')
参考 深度强化学习–TRPO与PPO实现