import numpy as np

def gauss_seidel(A, b, n, x_ini=None):
    x = x_ini or np.zeros_like(b)

    row, col =np.shape(A)
    for _ in range(n):
        for i in range(row):
            x_new = b[i]
            for j in range(col):
                if i < j:
                    x_new -= A[i, j] * x[j]
                    x[i] = x_new/A[i, i]
                if i > j:
                    x_new -= A[i, j] * x[j]
                    x[i] = x_new/A[i, i]

    return x

if __name__ == "__main__":
    A = np.array(eval(input()), dtype=float)
    b = np.array(eval(input()), dtype=float)
    n = int(input())
    print(gauss_seidel(A, b, n).tolist())