有一个长为
的数组,它是由长为
的数组
,
,...,
重复
次得到的。
定义这个数组的一个区间的权值为它里面不同的数的个数,现在,你需要求出对于这个数组的每个非空区间的权值之和。
答案对取模。
注意到计算每一个区间的影响是很难的,因为我们能表示一个区间颜色种类数的方法是最快的
而这道题让我们放弃
这又是一个套路了,既然我们不好直接求,那么拆分问题
给一个相似的例子
求两两异或的和
肯定正着做不好做,但考虑到,这个问题在时就很好做
因此想到拆位
对于这道题也是一样,考虑计算每种颜色贡献的区间
仿佛也不好做,但正难则反,计算每种颜色不会贡献的区间很简单
那就是相邻的两个颜色间的所有区间
对的序列我们可以轻易用一次扫描
通过记录每个颜色上次出现的位置
利用组合数求出
但对的呢
考虑有些部分重复求了
红色的被夹在区间中间的部分有个
绿色蓝色各有个
绿蓝拼在一起的有个
因此我们只需要求的区间把色块拼起来就可以了
最后说明一下
长度区间个数
#include<bits/stdc++.h>
#define re register
#define N 100001
#define INF 0x3f3f3f3f
#define mod 1000000007ll
using namespace std;
inline char nc(){
static char buf[1048576],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1048576,stdin),p1==p2)?EOF:*p1++;
}
#define getchar nc
template<typename _int>
inline void read(re _int& x){
re char opt;re _int flag=1,res=0;
while((opt=getchar())<'0'||opt>'9')if(opt=='-')flag=-1;
while(opt>='0'&&opt<='9'){res=(res<<3)+(res<<1)+opt-'0';opt=getchar();}
x=res*flag;
}
typedef long long ll;
int a[N<<1],pos[N],t[N],tot,l[N<<1];
ll ans,n,k;
inline ll f(re ll x){return x*(x+1)%mod*500000004ll%mod;}
inline void Read(void){
re int i;read(n);read(k);
for(i=1;i<=n;++i){read(a[i]);t[i]=a[i];}
sort(t+1,t+n+1);tot=unique(t+1,t+n+1)-(t+1);
for(i=1;i<=n;++i){a[i]=lower_bound(t+1,t+tot+1,a[i])-t;a[i+n]=a[i];}
}
inline void Solve(void){
re int i;re ll self,sum,len,left,right;
ans=f(1ll*n*k%mod)*tot%mod;
self=0;
for(i=1;i<=n;++i){
l[i]=pos[a[i]];pos[a[i]]=i;
if(l[i]+1==i||!l[i])continue;len=1ll*i-l[i]-1ll;
self=(self+f(len))%mod;
}
for(i=1;i<=tot;++i)pos[i]=0;
left=0;
for(i=1;i<=n;++i){
l[i]=pos[a[i]];pos[a[i]]=i;
if(l[i]||l[i]+1==i)continue;len=1ll*i-l[i]-1ll;
left=(left+(1ll*len*(len+1ll)>>1ll))%mod;
}
for(i=1;i<=tot;++i)pos[i]=n+1;
right=0;
for(i=n;i>=1;--i){
l[i]=pos[a[i]];pos[a[i]]=i;
if(l[i]!=n+1||l[i]-1==i)continue;len=1ll*l[i]-i-1ll;
right=(right+(1ll*len*(len+1ll)>>1ll))%mod;
}
for(i=1;i<=tot;++i)pos[i]=0;
sum=0;
for(i=1;i<=(n<<1);++i){
l[i]=pos[a[i]];pos[a[i]]=i;
if(l[i]+1==i)continue;len=1ll*i-l[i]-1ll;
sum=(sum+(1ll*len*(len+1ll)>>1ll))%mod;
}
sum=((sum-self*2ll%mod-left)%mod+mod)%mod;
ans=(((ans-1ll*k*self%mod+mod)%mod-sum*(k-1ll)%mod-left-right)%mod+mod)%mod;
printf("%lld\n",(ans%mod+mod)%mod);
}
int main(void){
Read();Solve();
return 0;
} 

京公网安备 11010502036488号